PENANGANAN DATA MISSING VALUE PADA KUALITAS PRODUKSI JAGUNG DENGAN MENGGUNAKAN METODE K-NN IMPUTATION PADA ALGORITMA C4.5

Mochammad Lutfi, M. Hasyim
{"title":"PENANGANAN DATA MISSING VALUE PADA KUALITAS PRODUKSI JAGUNG DENGAN MENGGUNAKAN METODE K-NN IMPUTATION PADA ALGORITMA C4.5","authors":"Mochammad Lutfi, M. Hasyim","doi":"10.31598/jurnalresistor.v2i2.427","DOIUrl":null,"url":null,"abstract":"Corn is a staple crop for Indonesian people because most of his life is from the agriculture sector. To increase the productivity of corn, another thing to be aware of is looking at the quality of the corn products. Through empirical observation and observation, research explores and extracts data through the concept of data mining so that neglected data becomes useful. Thus determining the quality of corn production is an important task to help the farmers in determining the classification process. Missing value is a problem in maintaining a quality data. Missing value can be caused by several things, one of which is caused by an error at the time of data entry. Missing value will be a problem when the amount of data in large quantities, so it is very influential in the survey results. Therefore on this research proposed K-NN imputation method to handle missing value data. The results showed the accuracy of the C 4.5 algorithm classification process on the corn production dataset that experienced a missing value accuracy value of 92.90%. Whereas if done with special handling using the method K-NN imputation on the handling process missing value best value at k = 5 of 94.50% with this that the proposed method increases significantly.","PeriodicalId":164171,"journal":{"name":"Jurnal RESISTOR (Rekayasa Sistem Komputer)","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal RESISTOR (Rekayasa Sistem Komputer)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31598/jurnalresistor.v2i2.427","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Corn is a staple crop for Indonesian people because most of his life is from the agriculture sector. To increase the productivity of corn, another thing to be aware of is looking at the quality of the corn products. Through empirical observation and observation, research explores and extracts data through the concept of data mining so that neglected data becomes useful. Thus determining the quality of corn production is an important task to help the farmers in determining the classification process. Missing value is a problem in maintaining a quality data. Missing value can be caused by several things, one of which is caused by an error at the time of data entry. Missing value will be a problem when the amount of data in large quantities, so it is very influential in the survey results. Therefore on this research proposed K-NN imputation method to handle missing value data. The results showed the accuracy of the C 4.5 algorithm classification process on the corn production dataset that experienced a missing value accuracy value of 92.90%. Whereas if done with special handling using the method K-NN imputation on the handling process missing value best value at k = 5 of 94.50% with this that the proposed method increases significantly.
使用c - 5算法中的K-NN移动方法处理玉米生产质量的丢失数据
玉米是印尼人的主要作物,因为他的大部分生活都来自农业部门。为了提高玉米的产量,另一件要注意的事情是看玉米产品的质量。研究通过实证观察和观察,通过数据挖掘的概念对数据进行挖掘和提取,使被忽视的数据变得有用。因此确定玉米生产质量是一项重要任务,有助于农民在分级过程中确定。缺失值是维护高质量数据的一个问题。丢失值可能由几种原因引起,其中之一是由于数据输入时的错误引起的。当数据量很大时,会出现缺失值的问题,因此对调查结果的影响很大。因此本研究提出了K-NN插值方法来处理缺失值数据。结果表明,c4.5算法在玉米生产数据集上的分类准确率为92.90%。然而,如果使用k - nn方法对处理过程缺失值进行特殊处理,则k = 5处的最佳值为94.50%,因此所提出的方法显着增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信