Synchronized Time Profile Similarity in Applications to Nearest Neighbor Classification

Qimin Liu
{"title":"Synchronized Time Profile Similarity in Applications to Nearest Neighbor Classification","authors":"Qimin Liu","doi":"10.31234/osf.io/9y6cd","DOIUrl":null,"url":null,"abstract":"One of the existing approaches to time series classification exploits the time profiles using the original data with synchronization instead of model-implied data. Synchronization aligns inter-individual data from different time points to account for potential phase offsets and nonstationarity in the data. Such synchronization has been applied in psychology: For example, coordinated motion between two individuals exchanging information was used as a predictor and outcome of psychological processes. Synchronization also affords better classification outcomes, as discussed in the data mining community, through aligning the data to reveal the maximally shared profile underlying two compared data sequences. For inter-individual comparison of univariate time series data, existing similarity indices include Euclidean distances and squared correlations. For synchronization, we introduce dynamic time warping and window-crossed lagging. The current study compares the Euclidean distance and the squared correlation before and after synchronization using window-crossed lagging and dynamic time warping in applications to one-nearest-neighbor classification tasks. Discussion, limitations, and future directions are provided.","PeriodicalId":293872,"journal":{"name":"Springer Proceedings in Mathematics & Statistics","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Springer Proceedings in Mathematics & Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31234/osf.io/9y6cd","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

One of the existing approaches to time series classification exploits the time profiles using the original data with synchronization instead of model-implied data. Synchronization aligns inter-individual data from different time points to account for potential phase offsets and nonstationarity in the data. Such synchronization has been applied in psychology: For example, coordinated motion between two individuals exchanging information was used as a predictor and outcome of psychological processes. Synchronization also affords better classification outcomes, as discussed in the data mining community, through aligning the data to reveal the maximally shared profile underlying two compared data sequences. For inter-individual comparison of univariate time series data, existing similarity indices include Euclidean distances and squared correlations. For synchronization, we introduce dynamic time warping and window-crossed lagging. The current study compares the Euclidean distance and the squared correlation before and after synchronization using window-crossed lagging and dynamic time warping in applications to one-nearest-neighbor classification tasks. Discussion, limitations, and future directions are provided.
同步时间轮廓相似度在最近邻分类中的应用
现有的时间序列分类方法之一是利用具有同步的原始数据而不是模型隐含数据来利用时间曲线。同步将来自不同时间点的个体间数据对齐,以考虑数据中的潜在相位偏移和非平稳性。这种同步已应用于心理学:例如,交换信息的两个个体之间的协调运动被用作心理过程的预测器和结果。同步还提供了更好的分类结果,正如数据挖掘社区中所讨论的那样,通过对齐数据以显示两个比较数据序列底层的最大共享概要文件。对于单变量时间序列数据的个体间比较,现有的相似性指标包括欧几里得距离和平方相关。为了实现同步,我们引入了动态时间翘曲和窗口交叉滞后。本研究比较了在一个最近邻分类任务中应用跨窗滞后和动态时间规整同步前后的欧几里得距离和平方相关。提供了讨论、限制和未来的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信