FERNIE-ViL: Facial Expression Enhanced Vision-and-Language Model

Soo-Ryeon Lee, Dohyun Kim, Mingyu Lee, SangKeun Lee
{"title":"FERNIE-ViL: Facial Expression Enhanced Vision-and-Language Model","authors":"Soo-Ryeon Lee, Dohyun Kim, Mingyu Lee, SangKeun Lee","doi":"10.1109/ICCICC53683.2021.9811331","DOIUrl":null,"url":null,"abstract":"Visual cognition requires analyzing actions, intentions, and emotions of persons in a given image. Visual Commonsense Reasoning (VCR) is a task that selects rationales and answers to questions for given images. In VCR, facial expressions are important nonverbal signals because they convey emotions and intentions in human interactions. However, ERNIE-ViL and UNITER, which are vision-and-language models to get image and text representations, do not learn them. We find that ERNIE-ViL and UNITER are vulnerable to the problem of identifying emotions. In this paper, therefore, we propose facial expression recognition FERNIE-ViL, which adapts a facial expression recognition module to the existing vision-and-language model. Experimental results (2.4% point improvement on VCR Q→A and 0.3% point improvement on VCR QA→R) demonstrate that our method can enhance visual commonsense reasoning by understanding human interactions.","PeriodicalId":101653,"journal":{"name":"2021 IEEE 20th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 20th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCICC53683.2021.9811331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Visual cognition requires analyzing actions, intentions, and emotions of persons in a given image. Visual Commonsense Reasoning (VCR) is a task that selects rationales and answers to questions for given images. In VCR, facial expressions are important nonverbal signals because they convey emotions and intentions in human interactions. However, ERNIE-ViL and UNITER, which are vision-and-language models to get image and text representations, do not learn them. We find that ERNIE-ViL and UNITER are vulnerable to the problem of identifying emotions. In this paper, therefore, we propose facial expression recognition FERNIE-ViL, which adapts a facial expression recognition module to the existing vision-and-language model. Experimental results (2.4% point improvement on VCR Q→A and 0.3% point improvement on VCR QA→R) demonstrate that our method can enhance visual commonsense reasoning by understanding human interactions.
面部表情增强视觉和语言模型
视觉认知需要分析给定图像中人物的行为、意图和情感。视觉常识推理(VCR)是一项为给定图像选择基本原理和问题答案的任务。在VCR中,面部表情是重要的非语言信号,因为它们传达了人类互动中的情感和意图。然而,用于获取图像和文本表示的视觉和语言模型ERNIE-ViL和UNITER不学习它们。我们发现ERNIE-ViL和UNITER容易出现识别情绪的问题。因此,本文提出了面部表情识别FERNIE-ViL,它将一个面部表情识别模块适配到现有的视觉语言模型中。实验结果(VCR Q→A提高2.4%,VCR QA→R提高0.3%)表明,我们的方法可以通过理解人类互动来增强视觉常识推理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信