Learn Fine-grained Sharing Network for Multiple Tasks

Yanbao Ma, Hao Xu, Junzhou He, Kun Qian
{"title":"Learn Fine-grained Sharing Network for Multiple Tasks","authors":"Yanbao Ma, Hao Xu, Junzhou He, Kun Qian","doi":"10.1109/CCIS53392.2021.9754608","DOIUrl":null,"url":null,"abstract":"Conventional Multi-Task Learning (MTL) models, such as hard sharing, adopt handcrafted network architecture, which shares entire layers for all tasks, and thus have two shortcomings: 1) negative transfer phenomenon and 2) low parameter efficiency. This paper proposes a novel neural network model, which allows different tasks to share a network at the parameter level. Specifically, the model defines a subnet for each task by adopting task-specific binary masks. The masks are trainable and can be learned together with network weights using standard back-propagation. Benefit from the fine-grained sharing mechanism, the negative transfer phenomenon can be alleviated, and the parameter efficiency is greatly improved. According to the experiments on a public dataset, our model outperforms the single-task baseline model even when only 0.8% of parameters remained in the subnets. Compared with the multi-task baseline model using fixed masks, our model is much more robust to changes in network sparsity.","PeriodicalId":191226,"journal":{"name":"2021 IEEE 7th International Conference on Cloud Computing and Intelligent Systems (CCIS)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 7th International Conference on Cloud Computing and Intelligent Systems (CCIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCIS53392.2021.9754608","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Conventional Multi-Task Learning (MTL) models, such as hard sharing, adopt handcrafted network architecture, which shares entire layers for all tasks, and thus have two shortcomings: 1) negative transfer phenomenon and 2) low parameter efficiency. This paper proposes a novel neural network model, which allows different tasks to share a network at the parameter level. Specifically, the model defines a subnet for each task by adopting task-specific binary masks. The masks are trainable and can be learned together with network weights using standard back-propagation. Benefit from the fine-grained sharing mechanism, the negative transfer phenomenon can be alleviated, and the parameter efficiency is greatly improved. According to the experiments on a public dataset, our model outperforms the single-task baseline model even when only 0.8% of parameters remained in the subnets. Compared with the multi-task baseline model using fixed masks, our model is much more robust to changes in network sparsity.
学习多任务的细粒度共享网络
传统的多任务学习(MTL)模型,如硬共享,采用手工构建的网络架构,所有任务共享整个层,因此存在两个缺点:1)负迁移现象;2)参数效率低。本文提出了一种新的神经网络模型,该模型允许不同的任务在参数级上共享一个网络。具体来说,该模型通过采用特定于任务的二进制掩码为每个任务定义一个子网。掩码是可训练的,并且可以使用标准的反向传播与网络权重一起学习。得益于细粒度的共享机制,可以缓解负传递现象,大大提高参数效率。根据在公共数据集上的实验,即使只有0.8%的参数留在子网中,我们的模型也优于单任务基线模型。与使用固定掩码的多任务基线模型相比,该模型对网络稀疏度的变化具有更强的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信