{"title":"Symbolic diagnosis for intelligent control","authors":"S. Jowers, J. Painter","doi":"10.1109/ISIC.1988.65444","DOIUrl":null,"url":null,"abstract":"The results of research intended to create a symbolic diagnostician to support intelligent control of numerical processors and/or processes are reported. Example applications include real-time signal processors, industrial automation, and aerospace power systems. The approach is to create a generic, symbolic inference engine to interpret data from real-time numerical processes. The interpreted data are then utilized by companion symbolic and numeric modules resulting in a dynamic, intelligent real-time control architecture. General results are obtained while focusing research efforts on an initial target application-a software-intensive radio receiver/processor. Object-oriented programming techniques are used due to ease of knowledge engineering and potential parallels to hardware implementation.<<ETX>>","PeriodicalId":155616,"journal":{"name":"Proceedings IEEE International Symposium on Intelligent Control 1988","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1988-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE International Symposium on Intelligent Control 1988","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIC.1988.65444","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
The results of research intended to create a symbolic diagnostician to support intelligent control of numerical processors and/or processes are reported. Example applications include real-time signal processors, industrial automation, and aerospace power systems. The approach is to create a generic, symbolic inference engine to interpret data from real-time numerical processes. The interpreted data are then utilized by companion symbolic and numeric modules resulting in a dynamic, intelligent real-time control architecture. General results are obtained while focusing research efforts on an initial target application-a software-intensive radio receiver/processor. Object-oriented programming techniques are used due to ease of knowledge engineering and potential parallels to hardware implementation.<>