A projection approach to equality constrained iterative linear quadratic optimal control

Markus Giftthaler, J. Buchli
{"title":"A projection approach to equality constrained iterative linear quadratic optimal control","authors":"Markus Giftthaler, J. Buchli","doi":"10.1109/HUMANOIDS.2017.8239538","DOIUrl":null,"url":null,"abstract":"This paper presents a state and state-input constrained variant of the discrete-time iterative Linear Quadratic Regulator (iLQR) algorithm, with linear time-complexity in the number of time steps. The approach is based on a projection of the control input onto the nullspace of the linearized constraints. We derive a fully constraint-compliant feedforward-feedback control update rule, for which we can solve efficiently with Riccati-style difference equations. We assume that the relative degree of all constraints in the discrete-time system model is equal to one, which often holds for robotics problems employing rigid-body dynamic models. Simulation examples, including a 6 DoF robotic arm, are given to validate and illustrate the performance of the method.","PeriodicalId":143992,"journal":{"name":"2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HUMANOIDS.2017.8239538","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

This paper presents a state and state-input constrained variant of the discrete-time iterative Linear Quadratic Regulator (iLQR) algorithm, with linear time-complexity in the number of time steps. The approach is based on a projection of the control input onto the nullspace of the linearized constraints. We derive a fully constraint-compliant feedforward-feedback control update rule, for which we can solve efficiently with Riccati-style difference equations. We assume that the relative degree of all constraints in the discrete-time system model is equal to one, which often holds for robotics problems employing rigid-body dynamic models. Simulation examples, including a 6 DoF robotic arm, are given to validate and illustrate the performance of the method.
等式约束迭代线性二次最优控制的投影方法
本文提出了一种状态约束和状态输入约束的离散时间迭代线性二次调节器(iLQR)算法,该算法在时间步长数上具有线性时间复杂度。该方法基于控制输入在线性化约束的零空间上的投影。导出了一种完全符合约束的前馈-反馈控制更新规则,该规则可以用利卡蒂差分方程有效地求解。我们假设离散系统模型中所有约束的相对程度等于1,这通常适用于采用刚体动力学模型的机器人问题。最后以一个6自由度机械臂为例进行了仿真,验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信