Partial outline combination and categorization using 3D-range measurements on a mobile robot

Marko Reimer, Bernardo Wagner
{"title":"Partial outline combination and categorization using 3D-range measurements on a mobile robot","authors":"Marko Reimer, Bernardo Wagner","doi":"10.1109/ETFA.2010.5641127","DOIUrl":null,"url":null,"abstract":"We present a method to aggregate and classify the 2D outline of arbitrary shaped objects from 3D-range data. As a mobile robot only captures a limited part of an object in a single measurement, the raw data of several measurements are combined to build a data set as comprehensive as possible. Doing so the classification uses all previous measurements. As the classification uses local curvature based features it can classify partial and complete shapes. The approach combines a spline approximation method with a scalable method for shape registration, combination and classification. Experimental results illustrate the ability of combining and classifying real world objects on a mobile robot.","PeriodicalId":201440,"journal":{"name":"2010 IEEE 15th Conference on Emerging Technologies & Factory Automation (ETFA 2010)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE 15th Conference on Emerging Technologies & Factory Automation (ETFA 2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETFA.2010.5641127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present a method to aggregate and classify the 2D outline of arbitrary shaped objects from 3D-range data. As a mobile robot only captures a limited part of an object in a single measurement, the raw data of several measurements are combined to build a data set as comprehensive as possible. Doing so the classification uses all previous measurements. As the classification uses local curvature based features it can classify partial and complete shapes. The approach combines a spline approximation method with a scalable method for shape registration, combination and classification. Experimental results illustrate the ability of combining and classifying real world objects on a mobile robot.
在移动机器人上使用3d距离测量进行部分轮廓组合和分类
提出了一种从三维距离数据中对任意形状物体的二维轮廓进行聚合和分类的方法。由于移动机器人在一次测量中只能捕获物体的有限部分,因此将多次测量的原始数据组合在一起,以构建尽可能全面的数据集。在这样做时,分类使用所有以前的测量值。由于分类使用基于局部曲率的特征,因此可以对部分形状和完整形状进行分类。该方法将样条近似方法与可扩展的形状配准、组合和分类方法相结合。实验结果证明了移动机器人对真实世界物体的组合和分类能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信