Optimizing parallel simulation of multicore systems using domain-specific knowledge

Jun Wang, Zhenjiang Dong, S. Yalamanchili, G. Riley
{"title":"Optimizing parallel simulation of multicore systems using domain-specific knowledge","authors":"Jun Wang, Zhenjiang Dong, S. Yalamanchili, G. Riley","doi":"10.1145/2486092.2486108","DOIUrl":null,"url":null,"abstract":"This paper presents two optimization techniques for the basic Null-message algorithm in the context of parallel simulation of multicore computer architectures. Unlike the general, application-independent optimization methods, these are application-specific optimizations that make use of system properties of the simulation application. We demonstrate in two aspects that the domain-specific knowledge offers great potential for optimization. First, it allows us to send Null-messages much less eagerly, thus greatly reducing the amount of Null-messages. Second, the internal state of the simulation application allows us to make conservative forecast of future outgoing events. This leads to the creation of an enhanced synchronization algorithm called Forecast Null-message algorithm, which, by combining the forecast from both sides of a link, can greatly improve the simulation look-ahead. Compared with the basic Null-message algorithm, our optimizations greatly reduce the number of Null-messages and increase simulation performance significantly as a result. On a subset of the PARSEC benchmarks, a maximum speedup of about 6 is achieved with 17 LPs.","PeriodicalId":115341,"journal":{"name":"Proceedings of the 1st ACM SIGSIM Conference on Principles of Advanced Discrete Simulation","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1st ACM SIGSIM Conference on Principles of Advanced Discrete Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2486092.2486108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This paper presents two optimization techniques for the basic Null-message algorithm in the context of parallel simulation of multicore computer architectures. Unlike the general, application-independent optimization methods, these are application-specific optimizations that make use of system properties of the simulation application. We demonstrate in two aspects that the domain-specific knowledge offers great potential for optimization. First, it allows us to send Null-messages much less eagerly, thus greatly reducing the amount of Null-messages. Second, the internal state of the simulation application allows us to make conservative forecast of future outgoing events. This leads to the creation of an enhanced synchronization algorithm called Forecast Null-message algorithm, which, by combining the forecast from both sides of a link, can greatly improve the simulation look-ahead. Compared with the basic Null-message algorithm, our optimizations greatly reduce the number of Null-messages and increase simulation performance significantly as a result. On a subset of the PARSEC benchmarks, a maximum speedup of about 6 is achieved with 17 LPs.
使用特定领域知识优化多核系统并行仿真
在多核计算机体系结构并行仿真的背景下,提出了对基本空消息算法的两种优化技术。与一般的、独立于应用程序的优化方法不同,这些是特定于应用程序的优化,它们利用了模拟应用程序的系统属性。我们从两个方面证明了领域特定知识为优化提供了巨大的潜力。首先,它允许我们不那么急切地发送null消息,从而大大减少了null消息的数量。其次,模拟应用程序的内部状态允许我们对未来传出的事件做出保守的预测。这导致了一种称为预测空消息算法的增强型同步算法的创建,该算法通过结合来自链路双方的预测,可以大大提高模拟的前瞻性。与基本的Null-message算法相比,我们的优化大大减少了Null-message的数量,从而显著提高了仿真性能。在PARSEC基准测试的一个子集上,使用17个lp可以实现大约6的最大加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信