{"title":"Mirror Symmetry and smoothing Gorenstein toric affine 3-folds","authors":"A. Corti, Matej Filip, Andrea Petracci","doi":"10.1017/9781108877831.005","DOIUrl":null,"url":null,"abstract":"We state two conjectures that together allow one to describe the set of smoothing components of a Gorenstein toric affine 3-fold in terms of a combinatorially defined and easily studied set of Laurent polynomials called 0-mutable polynomials. We explain the origin of the conjectures in mirror symmetry and present some of the evidence.","PeriodicalId":278201,"journal":{"name":"arXiv: Algebraic Geometry","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/9781108877831.005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
We state two conjectures that together allow one to describe the set of smoothing components of a Gorenstein toric affine 3-fold in terms of a combinatorially defined and easily studied set of Laurent polynomials called 0-mutable polynomials. We explain the origin of the conjectures in mirror symmetry and present some of the evidence.