New Trends in Graph Mining: Structural and Node-Colored Network Motifs

Francesco Bruno, L. Palopoli, Simona E. Rombo
{"title":"New Trends in Graph Mining: Structural and Node-Colored Network Motifs","authors":"Francesco Bruno, L. Palopoli, Simona E. Rombo","doi":"10.4018/JKDB.2010100206","DOIUrl":null,"url":null,"abstract":"Searching for repeated features characterizing biological data is fundamental in computational biology. When biological networks are under analysis, the presence of repeated modules across the same network (or several distinct ones) is shown to be very relevant. Indeed, several studies prove that biological networks can be often understood in terms of coalitions of basic repeated building blocks, often referred to as network motifs.This work provides a review of the main techniques proposed for motif extraction from biological networks. In particular, main intrinsic difficulties related to the problem are pointed out, along with solutions proposed in the literature to overcome them. Open challenges and directions for future research are finally discussed.","PeriodicalId":160270,"journal":{"name":"Int. J. Knowl. Discov. Bioinform.","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Knowl. Discov. Bioinform.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/JKDB.2010100206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Searching for repeated features characterizing biological data is fundamental in computational biology. When biological networks are under analysis, the presence of repeated modules across the same network (or several distinct ones) is shown to be very relevant. Indeed, several studies prove that biological networks can be often understood in terms of coalitions of basic repeated building blocks, often referred to as network motifs.This work provides a review of the main techniques proposed for motif extraction from biological networks. In particular, main intrinsic difficulties related to the problem are pointed out, along with solutions proposed in the literature to overcome them. Open challenges and directions for future research are finally discussed.
图挖掘的新趋势:结构和节点着色网络母题
寻找表征生物数据的重复特征是计算生物学的基础。在分析生物网络时,同一网络(或几个不同的网络)中重复模块的存在被证明是非常相关的。事实上,一些研究证明,生物网络通常可以被理解为基本重复构建块的联盟,通常被称为网络基序。本文综述了从生物网络中提取基序的主要技术。特别指出了与该问题相关的主要内在困难,以及文献中提出的克服这些困难的解决方案。最后讨论了未来研究面临的挑战和方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信