Attribute-Based K-Means Algorithm

Anand Prakash, Y. S. Chungkham, Mohd. Yousuf Ansari
{"title":"Attribute-Based K-Means Algorithm","authors":"Anand Prakash, Y. S. Chungkham, Mohd. Yousuf Ansari","doi":"10.1109/ICCCIS48478.2019.8974460","DOIUrl":null,"url":null,"abstract":"Clustering is a method to discover hidden natural structure in a dataset of a phenomenon. In this study, we have extended K-Means algorithm for spatiotemporal dataset by introducing attribute-based mass function to calculate center of mass of cluster instead of calculating geometry-based centroid in the dataset. The proposed modification in traditional K-Means algorithm produces more meaningful clusters and converges faster than traditional K-Means. In our study, we have used a real ‘fire dataset’ to conduct experiments on the proposed approach for clustering.","PeriodicalId":436154,"journal":{"name":"2019 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCIS48478.2019.8974460","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Clustering is a method to discover hidden natural structure in a dataset of a phenomenon. In this study, we have extended K-Means algorithm for spatiotemporal dataset by introducing attribute-based mass function to calculate center of mass of cluster instead of calculating geometry-based centroid in the dataset. The proposed modification in traditional K-Means algorithm produces more meaningful clusters and converges faster than traditional K-Means. In our study, we have used a real ‘fire dataset’ to conduct experiments on the proposed approach for clustering.
基于属性的k -均值算法
聚类是一种在现象的数据集中发现隐藏的自然结构的方法。在本研究中,我们扩展了时空数据集的K-Means算法,引入基于属性的质量函数来计算聚类的质心,而不是在数据集中计算基于几何的质心。该算法对传统K-Means算法进行了改进,产生了更多有意义的聚类,收敛速度也比传统K-Means算法快。在我们的研究中,我们使用了一个真实的“fire数据集”对所提出的聚类方法进行了实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信