Modeling acoustic vector fields for inverse problems

Thomas J. Deal, Kevin B. Smith
{"title":"Modeling acoustic vector fields for inverse problems","authors":"Thomas J. Deal, Kevin B. Smith","doi":"10.1109/COA.2016.7535811","DOIUrl":null,"url":null,"abstract":"Acoustic vector sensors that measure pressure and orthogonal particle velocity are gaining widespread interest. Predicting their performance requires calculating the pressure field and the velocity fields, which require spatial gradients of the pressure field. In typical hydrophone applications, significant computational savings are realized by using reciprocity to generate the pressure field as a function of source position rather than receive position. However, the presence of the spatial gradients in the velocity fields means that reciprocity cannot be used to model the vector field for inverse problems. Instead, the inverse vector velocity field must be computed point by point, even for the simplest environments. Examples of this effect are demonstrated by the derivation of analytic expressions for pressure and particle velocity in a Pekeris waveguide. These simple waveguide results are extended to arbitrary, range-dependent, environment parameters using a parabolic equation model.","PeriodicalId":155481,"journal":{"name":"2016 IEEE/OES China Ocean Acoustics (COA)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/OES China Ocean Acoustics (COA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COA.2016.7535811","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Acoustic vector sensors that measure pressure and orthogonal particle velocity are gaining widespread interest. Predicting their performance requires calculating the pressure field and the velocity fields, which require spatial gradients of the pressure field. In typical hydrophone applications, significant computational savings are realized by using reciprocity to generate the pressure field as a function of source position rather than receive position. However, the presence of the spatial gradients in the velocity fields means that reciprocity cannot be used to model the vector field for inverse problems. Instead, the inverse vector velocity field must be computed point by point, even for the simplest environments. Examples of this effect are demonstrated by the derivation of analytic expressions for pressure and particle velocity in a Pekeris waveguide. These simple waveguide results are extended to arbitrary, range-dependent, environment parameters using a parabolic equation model.
反问题的声矢量场建模
测量压力和正交粒子速度的声矢量传感器正受到广泛的关注。预测其性能需要计算压力场和速度场,这需要计算压力场的空间梯度。在典型的水听器应用中,通过使用互易来产生压力场作为源位置的函数而不是接收位置的函数,可以实现显著的计算节省。然而,速度场中空间梯度的存在意味着逆问题的矢量场不能用互易来建模。相反,即使对于最简单的环境,逆矢量速度场也必须逐点计算。举例说明了这种效应的推导解析表达式的压力和粒子速度在一个佩克里斯波导。这些简单的波导结果扩展到任意的,距离相关的,使用抛物方程模型的环境参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信