Sample data and training modules for cleaning biodiversity information

M. Cobos, L. Jiménez, C. Nuñez-Penichet, D. Romero-Alvarez, M. Simões
{"title":"Sample data and training modules for cleaning biodiversity information","authors":"M. Cobos, L. Jiménez, C. Nuñez-Penichet, D. Romero-Alvarez, M. Simões","doi":"10.17161/BI.V13I0.7600","DOIUrl":null,"url":null,"abstract":"Large-scale biodiversity databases have become crucial information sources in many analyses in biogeography, macroecology, and conservation biology, often involving development of empirical models of species’ ecological niches and predictions of their geographic distributions. These analyses, however, can be impaired by the presence of errors, particularly as regards taxonomic identifications and accurate geographic coordinates. Here, we present a detailed data-cleaning exercise based on two contrasting datasets; we link these example data with a step-by-step guide to overcoming these problems and improving data quality for analyses based on these data.","PeriodicalId":269455,"journal":{"name":"Biodiversity Informatics","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biodiversity Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17161/BI.V13I0.7600","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

Abstract

Large-scale biodiversity databases have become crucial information sources in many analyses in biogeography, macroecology, and conservation biology, often involving development of empirical models of species’ ecological niches and predictions of their geographic distributions. These analyses, however, can be impaired by the presence of errors, particularly as regards taxonomic identifications and accurate geographic coordinates. Here, we present a detailed data-cleaning exercise based on two contrasting datasets; we link these example data with a step-by-step guide to overcoming these problems and improving data quality for analyses based on these data.
清洁生物多样性信息的样本数据和培训模块
大型生物多样性数据库已成为生物地理学、宏观生态学和保护生物学等领域的重要信息来源,通常涉及物种生态位的经验模型的建立和物种地理分布的预测。然而,这些分析可能因存在错误而受到损害,特别是在分类鉴定和准确的地理坐标方面。在这里,我们提出了一个基于两个对比数据集的详细数据清理练习;我们将这些示例数据与逐步指南联系起来,以克服这些问题并改进基于这些数据的分析的数据质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信