hauWE: Hausa Words Embedding for Natural Language Processing

Idris Abdulmumin, B. Galadanci
{"title":"hauWE: Hausa Words Embedding for Natural Language Processing","authors":"Idris Abdulmumin, B. Galadanci","doi":"10.1109/NigeriaComputConf45974.2019.8949674","DOIUrl":null,"url":null,"abstract":"Words embedding (distributed word vector representations) have become an essential component of many natural language processing (NLP) tasks such as machine translation, sentiment analysis, word analogy, named entity recognition and word similarity. Despite this, the only work that provides word vectors for Hausa language is that of [1] trained using fastText, consisting of only a few words vectors. This work presents words embedding models using Word2Vec’s Continuous Bag of Words (CBoW) and Skip Gram (SG) models. The models, hauWE (Hausa Words Embedding), are bigger and better than the only previous model, making them more useful in NLP tasks. To compare the models, they were used to predict the 10 most similar words to 30 randomly selected Hausa words. hauWE CBoW’s 88.7% and hauWE SG’s 79.3% prediction accuracy greatly outperformed [1]’s 22.3%.","PeriodicalId":228657,"journal":{"name":"2019 2nd International Conference of the IEEE Nigeria Computer Chapter (NigeriaComputConf)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 2nd International Conference of the IEEE Nigeria Computer Chapter (NigeriaComputConf)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NigeriaComputConf45974.2019.8949674","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Words embedding (distributed word vector representations) have become an essential component of many natural language processing (NLP) tasks such as machine translation, sentiment analysis, word analogy, named entity recognition and word similarity. Despite this, the only work that provides word vectors for Hausa language is that of [1] trained using fastText, consisting of only a few words vectors. This work presents words embedding models using Word2Vec’s Continuous Bag of Words (CBoW) and Skip Gram (SG) models. The models, hauWE (Hausa Words Embedding), are bigger and better than the only previous model, making them more useful in NLP tasks. To compare the models, they were used to predict the 10 most similar words to 30 randomly selected Hausa words. hauWE CBoW’s 88.7% and hauWE SG’s 79.3% prediction accuracy greatly outperformed [1]’s 22.3%.
基于自然语言处理的豪萨语词嵌入
词嵌入(分布式词向量表示)已经成为许多自然语言处理(NLP)任务的重要组成部分,如机器翻译、情感分析、词类比、命名实体识别和词相似度。尽管如此,唯一为豪萨语提供词向量的工作是使用fastText训练的[1],仅由几个词向量组成。本文提出了使用Word2Vec的连续词袋(CBoW)和跳格(SG)模型的词嵌入模型。hauWE(豪萨词嵌入)模型比之前唯一的模型更大更好,使它们在NLP任务中更有用。为了比较这些模型,他们被用来预测10个与30个随机选择的豪萨语单词最相似的单词。hauWE CBoW的88.7%和hauWE SG的79.3%的预测准确率大大优于[1]的22.3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信