Bioinspired memory model for HTM face recognition

O. Krestinskaya, A. P. James
{"title":"Bioinspired memory model for HTM face recognition","authors":"O. Krestinskaya, A. P. James","doi":"10.1109/ICACCI.2016.7732265","DOIUrl":null,"url":null,"abstract":"Inspired from the working principle of human memory, we propose a new algorithm for storing HTM features detected from images. The resulting features from the training set require lower memory than existing HTM training set. The proposed features are tested in a face recognition problem using the benchmark AR dataset. the simulation results show that the proposed algorithm gives higher face recognition accuracy, in comparison to the conventional methods.","PeriodicalId":371328,"journal":{"name":"2016 International Conference on Advances in Computing, Communications and Informatics (ICACCI)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Advances in Computing, Communications and Informatics (ICACCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACCI.2016.7732265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Inspired from the working principle of human memory, we propose a new algorithm for storing HTM features detected from images. The resulting features from the training set require lower memory than existing HTM training set. The proposed features are tested in a face recognition problem using the benchmark AR dataset. the simulation results show that the proposed algorithm gives higher face recognition accuracy, in comparison to the conventional methods.
HTM人脸识别的生物记忆模型
受人类记忆工作原理的启发,我们提出了一种新的算法来存储从图像中检测到的HTM特征。与现有的HTM训练集相比,训练集的结果特征需要更少的内存。使用基准AR数据集在人脸识别问题中测试了所提出的特征。仿真结果表明,与传统的人脸识别方法相比,该算法具有更高的人脸识别精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信