{"title":"Deteksi Sinyal : Overview Model Parametrik menggunakan Kriteria Neyman-Pearson","authors":"Fiky Yosef Suratman, Aloysius Adya Pramudita, Dharu Arseno","doi":"10.26760/ELKOMIKA.V7I1.14","DOIUrl":null,"url":null,"abstract":"ABSTRAKDeteksi sinyal banyak diimplementasikan dalam sistem pengolahan sinyal yang sangat kompleks. Sebagai contoh digunakan pada sub sistem pengolahan sinyal radar pengintai yang berfungsi untuk deteksi dan pelacakan target. Salah satu implementasi terbaru dari deteksi sinyal adalah untuk fungsi spectrum sensing pada Cognitive Radio. Deteksi sinyal dapat didefinisikan sebagai binary hypothesis testing, yaitu memutuskan satu dari dua keadaan: hanya derau atau tidak ada sinyal (null hypothesis), dan ada sinyal (alternative hypothesis). Teori deteksi sinyal merupakan bidang yang cukup luas, sehingga paper ini fokus pada pendekatan parametrik dengan Teorema Neyman-Pearson. Kedua hypothesis dimodelkan dengan variabel acak dengan distribusi rapat kemungkinan yang sama tetapi mempunyai parameter yang berbeda. Ditunjukkan penurunan test statistic untuk dua skenario, yaitu distribusi dengan diketahui sebagian dan diketahui penuh. Bagian simulasi menunjukkan kinerja detektor sinyal secara analitis mempunyai hasil yang serupa dengan simulasi Monte Carlo.Kata kunci: deteksi sinyal, Neyman-Pearson, hypothesis testing, spectrum sensing, radar. ABSTRACTSignal detection has been used in many sophisticated signal processing systems, such as for signal processing in surveillance radar which is to detect and to track a radar target. Recently, signal detection is widely used for spectrum sensing in Cognitive Radio. Signal detection is a binary hypothesis testing problem which is to choose one out of two conditions, i.e., noise only or signal absence (null hypothesis), and signal presence (alternative hypothesis). Since signal detection theory is a wide area, this paper only focuses on parametric approach using Neyman-Pearson theorem. The two hypotheses are modeled by random variables having the same distribution but different parameters. The derivations of test statistics (detectors) are shown for two scenarios, i.e., partially known and perfectly known distributions. Analytical results and Monte Carlo simulations of the derived detectors show similar performances.Keywords: signal detection, Neyman-Pearson, hypothesis testing, spectrum sensing, radar.","PeriodicalId":344430,"journal":{"name":"ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26760/ELKOMIKA.V7I1.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
ABSTRAKDeteksi sinyal banyak diimplementasikan dalam sistem pengolahan sinyal yang sangat kompleks. Sebagai contoh digunakan pada sub sistem pengolahan sinyal radar pengintai yang berfungsi untuk deteksi dan pelacakan target. Salah satu implementasi terbaru dari deteksi sinyal adalah untuk fungsi spectrum sensing pada Cognitive Radio. Deteksi sinyal dapat didefinisikan sebagai binary hypothesis testing, yaitu memutuskan satu dari dua keadaan: hanya derau atau tidak ada sinyal (null hypothesis), dan ada sinyal (alternative hypothesis). Teori deteksi sinyal merupakan bidang yang cukup luas, sehingga paper ini fokus pada pendekatan parametrik dengan Teorema Neyman-Pearson. Kedua hypothesis dimodelkan dengan variabel acak dengan distribusi rapat kemungkinan yang sama tetapi mempunyai parameter yang berbeda. Ditunjukkan penurunan test statistic untuk dua skenario, yaitu distribusi dengan diketahui sebagian dan diketahui penuh. Bagian simulasi menunjukkan kinerja detektor sinyal secara analitis mempunyai hasil yang serupa dengan simulasi Monte Carlo.Kata kunci: deteksi sinyal, Neyman-Pearson, hypothesis testing, spectrum sensing, radar. ABSTRACTSignal detection has been used in many sophisticated signal processing systems, such as for signal processing in surveillance radar which is to detect and to track a radar target. Recently, signal detection is widely used for spectrum sensing in Cognitive Radio. Signal detection is a binary hypothesis testing problem which is to choose one out of two conditions, i.e., noise only or signal absence (null hypothesis), and signal presence (alternative hypothesis). Since signal detection theory is a wide area, this paper only focuses on parametric approach using Neyman-Pearson theorem. The two hypotheses are modeled by random variables having the same distribution but different parameters. The derivations of test statistics (detectors) are shown for two scenarios, i.e., partially known and perfectly known distributions. Analytical results and Monte Carlo simulations of the derived detectors show similar performances.Keywords: signal detection, Neyman-Pearson, hypothesis testing, spectrum sensing, radar.
ABSTRAKDeteksi信号很多非常复杂的信号处理系统中实施。例如,在一种用于探测和跟踪目标的雷达处理系统中使用。最近的信号探测执行之一是在无线电认知上的频谱感官功能。可以定义为二进制信号检测hypothesis测试,即决定从两种情况:只有空derau或没有信号(hypothesis),还有信号(另类hypothesis)。信号检测理论是相当广泛的领域,所以这篇文章关注的parametrik Neyman-Pearson定理的方法。第二hypothesis面前与会议分布随机变量相同的可能性,但有不同的参数。展示两个场景,即测试statistic减少已知和部分地分布。部分地显示信号探测器性能模拟分析也有类似于蒙特卡洛模拟的结果。关键词:信号检测、Neyman-Pearson hypothesis测试,全谱sensing,雷达。ABSTRACTSignal detection已被用在许多中等复杂信号加工系统,美国如此为加工在监控雷达信号,这是需要检测和跟踪百万目标雷达。最近,detection is widely used for信号频谱sensing in Cognitive收音机。detection是一个二进制信号hypothesis测试问题,这是需要选择一号out of两个条件,神盾局,零噪音只有或信号存在(hypothesis),和信号存在(另类hypothesis)。自从detection信号理论是一个宽区域,这篇文章只是用Neyman-Pearson focuses on parametric进近定理。两个hypotheses是modeled由随机variables玩得不变distribution但different parameters)。测试统计(detectors derivations》)是两份展示情况,神盾局部分认识和知名distributions极了。分析《derived results和蒙特卡洛simulations detectors秀类似performances。安装:信号detection, Neyman-Pearson hypothesis测试,全谱sensing,雷达。