I. Tamura, M. Sakai, S. Matsuura, Ryuya Shimazu, Hiroaki Tamashiro, Soichi Mabuchi
{"title":"Seismic Evaluation Method of Piping Systems by Inelastic Response Spectrum Analysis: Part 1 — Response Analysis","authors":"I. Tamura, M. Sakai, S. Matsuura, Ryuya Shimazu, Hiroaki Tamashiro, Soichi Mabuchi","doi":"10.1115/pvp2019-93898","DOIUrl":null,"url":null,"abstract":"\n An inelastic response-spectrum-analysis method for multi-degree-of-freedom systems was proposed. The method has lower analysis loads and good outlook given by the inelastic response spectrum like the elastic response-spectrum-analysis method, and is not an equivalent-linearization method. We propose a seismic evaluation method of piping systems to conduct seismic design using the inelastic response-spectrum-analysis. In this paper, the inelastic analysis method of piping systems for the seismic evaluation method is proposed and applied to a benchmark analysis problem of a piping system vibration test. The analysis result is compared with the vibration test result of the piping system. They are consistent and applicability of the analysis to the piping system was confirmed.","PeriodicalId":180537,"journal":{"name":"Volume 8: Seismic Engineering","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 8: Seismic Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/pvp2019-93898","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
An inelastic response-spectrum-analysis method for multi-degree-of-freedom systems was proposed. The method has lower analysis loads and good outlook given by the inelastic response spectrum like the elastic response-spectrum-analysis method, and is not an equivalent-linearization method. We propose a seismic evaluation method of piping systems to conduct seismic design using the inelastic response-spectrum-analysis. In this paper, the inelastic analysis method of piping systems for the seismic evaluation method is proposed and applied to a benchmark analysis problem of a piping system vibration test. The analysis result is compared with the vibration test result of the piping system. They are consistent and applicability of the analysis to the piping system was confirmed.