An improvement to the linear jump Markov system Gaussian mixture probability hypothesis density filter for maneuvering target tracking

Zhang Shicang, Li Jianxun, Wu Liangbin
{"title":"An improvement to the linear jump Markov system Gaussian mixture probability hypothesis density filter for maneuvering target tracking","authors":"Zhang Shicang, Li Jianxun, Wu Liangbin","doi":"10.1109/ICIEA.2012.6361021","DOIUrl":null,"url":null,"abstract":"An improvement approach to the linear Gaussian jump Markov system (LGJMS) Gaussian Mixture probability hypothesis density (GM-PHD) filter is designed for multiple maneuvering targets tracking. This method, which called mixture LGJMS GM-PHD (MLGJMS GM-PHD) filter, is based on the theory of generalized psuedo Bayes of the first order after the update step of LGJMS GM-PHD. Compared with the existing LGJMS GM-PHD filter, simulation results show that the designed filter weights over the original one.","PeriodicalId":220747,"journal":{"name":"2012 7th IEEE Conference on Industrial Electronics and Applications (ICIEA)","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 7th IEEE Conference on Industrial Electronics and Applications (ICIEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIEA.2012.6361021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

An improvement approach to the linear Gaussian jump Markov system (LGJMS) Gaussian Mixture probability hypothesis density (GM-PHD) filter is designed for multiple maneuvering targets tracking. This method, which called mixture LGJMS GM-PHD (MLGJMS GM-PHD) filter, is based on the theory of generalized psuedo Bayes of the first order after the update step of LGJMS GM-PHD. Compared with the existing LGJMS GM-PHD filter, simulation results show that the designed filter weights over the original one.
一种改进的线性跳跃马尔可夫系统高斯混合概率假设密度滤波器用于机动目标跟踪
针对多机动目标跟踪问题,设计了一种改进的线性高斯跳变马尔可夫系统(LGJMS)高斯混合概率假设密度(GM-PHD)滤波器。该方法基于LGJMS GM-PHD更新步骤后的一阶广义伪贝叶斯理论,称为混合LGJMS GM-PHD (MLGJMS GM-PHD)滤波。与现有的LGJMS GM-PHD滤波器进行比较,仿真结果表明,所设计的滤波器权重高于原有滤波器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信