Online Scheduling Unbiased Distributed Learning over Wireless Edge Networks

Ziyi Han, Ruiting Zhou, Jinlong Pang, Yue Cao, Haisheng Tan
{"title":"Online Scheduling Unbiased Distributed Learning over Wireless Edge Networks","authors":"Ziyi Han, Ruiting Zhou, Jinlong Pang, Yue Cao, Haisheng Tan","doi":"10.1109/ICPADS53394.2021.00080","DOIUrl":null,"url":null,"abstract":"To realize high quality smart IoT services, such as intelligent video surveillance in Auto Driving and Smart City, tremendous amount of distributed machine learning jobs train unbiased models in wireless edge networks, adopting the parameter server (PS) architecture. Due to the large datasets collected geo-distributedly, the training of unbiased distributed learning (UDL) brings high response latency and bandwidth consumption. In this paper, we propose an online scheduling algorithm, Okita, to minimize both the latency cost and bandwidth cost in UDL. Okita schedules UDL jobs at each time slot to jointly decide the execution time window, the amount of training data, the number and the location of concurrent workers and PSs in each site. To evaluate the practical performance of Okita, we implement a testbed based on Kubernetes. Extensive experiments and simulations show that Okita can reduce up to 60% of total cost, compared with the state-of-the-art schedulers in cloud systems.","PeriodicalId":309508,"journal":{"name":"2021 IEEE 27th International Conference on Parallel and Distributed Systems (ICPADS)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 27th International Conference on Parallel and Distributed Systems (ICPADS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPADS53394.2021.00080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To realize high quality smart IoT services, such as intelligent video surveillance in Auto Driving and Smart City, tremendous amount of distributed machine learning jobs train unbiased models in wireless edge networks, adopting the parameter server (PS) architecture. Due to the large datasets collected geo-distributedly, the training of unbiased distributed learning (UDL) brings high response latency and bandwidth consumption. In this paper, we propose an online scheduling algorithm, Okita, to minimize both the latency cost and bandwidth cost in UDL. Okita schedules UDL jobs at each time slot to jointly decide the execution time window, the amount of training data, the number and the location of concurrent workers and PSs in each site. To evaluate the practical performance of Okita, we implement a testbed based on Kubernetes. Extensive experiments and simulations show that Okita can reduce up to 60% of total cost, compared with the state-of-the-art schedulers in cloud systems.
无线边缘网络的在线调度无偏分布式学习
为了实现高质量的智能物联网服务,如自动驾驶和智慧城市中的智能视频监控,大量的分布式机器学习工作在无线边缘网络中训练无偏模型,采用参数服务器(PS)架构。由于数据集的地理分布,无偏分布式学习(UDL)的训练带来了较高的响应延迟和带宽消耗。在本文中,我们提出了一种在线调度算法Okita,以最小化UDL中的延迟成本和带宽成本。Okita在每个时隙调度UDL作业,共同决定执行时间窗口、培训数据量、每个站点中并发工作人员和ps的数量和位置。为了评估Okita的实际性能,我们实现了一个基于Kubernetes的测试平台。大量的实验和模拟表明,与云系统中最先进的调度器相比,Okita可以减少高达60%的总成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信