Probabilistic enumerative geometry over p-adic numbers: linear spaces on complete intersections

Rida Ait El Manssour, A. Lerário
{"title":"Probabilistic enumerative geometry over p-adic numbers: linear spaces on complete intersections","authors":"Rida Ait El Manssour, A. Lerário","doi":"10.5802/ahl.153","DOIUrl":null,"url":null,"abstract":"We compute the expectation of the number of linear spaces on a random complete intersection in $p$-adic projective space. Here \"random\" means that the coefficients of the polynomials defining the complete intersections are sampled uniformly form the $p$-adic integers. We show that as the prime $p$ tends to infinity the expected number of linear spaces on a random complete intersection tends to $1$. In the case of the number of lines on a random cubic in three-space and on the intersection of two random quadrics in four-space, we give an explicit formula for this expectation.","PeriodicalId":192307,"journal":{"name":"Annales Henri Lebesgue","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Henri Lebesgue","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/ahl.153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

We compute the expectation of the number of linear spaces on a random complete intersection in $p$-adic projective space. Here "random" means that the coefficients of the polynomials defining the complete intersections are sampled uniformly form the $p$-adic integers. We show that as the prime $p$ tends to infinity the expected number of linear spaces on a random complete intersection tends to $1$. In the case of the number of lines on a random cubic in three-space and on the intersection of two random quadrics in four-space, we give an explicit formula for this expectation.
p进数上的概率枚举几何:完全交点上的线性空间
我们计算了$p$进射影空间中随机完全交点上的线性空间数目的期望。这里的“随机”是指定义完整交点的多项式的系数均匀地抽样形成$p$-进整数。我们证明了当素数$p$趋于无穷时,随机完全交点上的线性空间的期望数趋于$1$。对于三维空间中一个随机三次曲面和四空间中两个随机二次曲面的交点上的线数,我们给出了这个期望的显式公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信