{"title":"Probabilistic enumerative geometry over p-adic numbers: linear spaces on complete intersections","authors":"Rida Ait El Manssour, A. Lerário","doi":"10.5802/ahl.153","DOIUrl":null,"url":null,"abstract":"We compute the expectation of the number of linear spaces on a random complete intersection in $p$-adic projective space. Here \"random\" means that the coefficients of the polynomials defining the complete intersections are sampled uniformly form the $p$-adic integers. We show that as the prime $p$ tends to infinity the expected number of linear spaces on a random complete intersection tends to $1$. In the case of the number of lines on a random cubic in three-space and on the intersection of two random quadrics in four-space, we give an explicit formula for this expectation.","PeriodicalId":192307,"journal":{"name":"Annales Henri Lebesgue","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Henri Lebesgue","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/ahl.153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
We compute the expectation of the number of linear spaces on a random complete intersection in $p$-adic projective space. Here "random" means that the coefficients of the polynomials defining the complete intersections are sampled uniformly form the $p$-adic integers. We show that as the prime $p$ tends to infinity the expected number of linear spaces on a random complete intersection tends to $1$. In the case of the number of lines on a random cubic in three-space and on the intersection of two random quadrics in four-space, we give an explicit formula for this expectation.