Sensor network-based wind field estimation using deep learning

Daniel Lee, Daniel Cisek, Shinjae Yoo
{"title":"Sensor network-based wind field estimation using deep learning","authors":"Daniel Lee, Daniel Cisek, Shinjae Yoo","doi":"10.1109/NYSDS.2017.8085047","DOIUrl":null,"url":null,"abstract":"The incorporation of wind fields, or movement of clouds, significantly improves the accuracy of time-series-based solar irradiance prediction models. To resolve problems regarding the cost and accuracy of current wind field estimation methods, there are the challenges in estimating wind fields using only solar irradiance sensor networks and evaluating the performance of models. We propose a cost-effective and reliable method to estimate wind fields through the application of Deep Learning and computational geometric algorithms. Using a realistic cloud simulator, validation datasets for the proposed model were generated, accounting for various complex factors including topology of sensor placement, changing wind speed and direction, and cloud density that directly impact sensor data. Preliminary qualitative and quantitative results indicate promising potential for practical deployment as an estimation model.","PeriodicalId":380859,"journal":{"name":"2017 New York Scientific Data Summit (NYSDS)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 New York Scientific Data Summit (NYSDS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NYSDS.2017.8085047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The incorporation of wind fields, or movement of clouds, significantly improves the accuracy of time-series-based solar irradiance prediction models. To resolve problems regarding the cost and accuracy of current wind field estimation methods, there are the challenges in estimating wind fields using only solar irradiance sensor networks and evaluating the performance of models. We propose a cost-effective and reliable method to estimate wind fields through the application of Deep Learning and computational geometric algorithms. Using a realistic cloud simulator, validation datasets for the proposed model were generated, accounting for various complex factors including topology of sensor placement, changing wind speed and direction, and cloud density that directly impact sensor data. Preliminary qualitative and quantitative results indicate promising potential for practical deployment as an estimation model.
基于传感器网络的深度学习风场估计
结合风场或云的运动,可以显著提高基于时间序列的太阳辐照度预测模型的准确性。为了解决当前风场估算方法的成本和精度问题,仅使用太阳辐照度传感器网络估算风场并评估模型的性能存在挑战。我们提出了一种经济可靠的方法,通过应用深度学习和计算几何算法来估计风场。利用真实的云模拟器,为所提出的模型生成验证数据集,考虑了各种复杂因素,包括传感器放置的拓扑结构,风速和风向的变化以及直接影响传感器数据的云密度。初步的定性和定量结果表明,该估计模型具有实际应用的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信