Blind Recognition of Text Input on Mobile Devices via Natural Language Processing

Qinggang Yue, Z. Ling, Wei Yu, Benyuan Liu, Xinwen Fu
{"title":"Blind Recognition of Text Input on Mobile Devices via Natural Language Processing","authors":"Qinggang Yue, Z. Ling, Wei Yu, Benyuan Liu, Xinwen Fu","doi":"10.1145/2757302.2757304","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate how to retrieve meaningful English text input on mobile devices from recorded videos while the text is illegible in the videos. In our previous work, we were able to retrieve random passwords with high success rate at a certain distance. When the distance increases, the success rate of recovering passwords decreases. However, if the input is meaningful text such as email messages, we can further increase the success rate via natural language processing techniques since the text follows spelling and grammar rules and is context sensitive. The process of retrieving the text from videos can be modeled as noisy channels. We first derive candidate words for each word of the input sentence, model the whole sentence with a Hidden Markov model and then apply the trigram language model to derive the original sentence. Our experiments validate our technique of retrieving meaningful English text input on mobile devices from recorded videos.","PeriodicalId":120179,"journal":{"name":"Proceedings of the 2015 Workshop on Privacy-Aware Mobile Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 Workshop on Privacy-Aware Mobile Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2757302.2757304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

In this paper, we investigate how to retrieve meaningful English text input on mobile devices from recorded videos while the text is illegible in the videos. In our previous work, we were able to retrieve random passwords with high success rate at a certain distance. When the distance increases, the success rate of recovering passwords decreases. However, if the input is meaningful text such as email messages, we can further increase the success rate via natural language processing techniques since the text follows spelling and grammar rules and is context sensitive. The process of retrieving the text from videos can be modeled as noisy channels. We first derive candidate words for each word of the input sentence, model the whole sentence with a Hidden Markov model and then apply the trigram language model to derive the original sentence. Our experiments validate our technique of retrieving meaningful English text input on mobile devices from recorded videos.
基于自然语言处理的移动设备文本输入的盲识别
在本文中,我们研究了如何在视频文本难以辨认的情况下,在移动设备上检索有意义的英语文本输入。在我们之前的工作中,我们能够在一定距离内以很高的成功率检索随机密码。距离越大,密码恢复成功率越低。但是,如果输入是有意义的文本,如电子邮件消息,我们可以通过自然语言处理技术进一步提高成功率,因为文本遵循拼写和语法规则,并且对上下文敏感。从视频中检索文本的过程可以建模为噪声信道。我们首先为输入句子的每个单词推导候选词,然后用隐马尔可夫模型对整个句子建模,然后应用三元组语言模型推导原始句子。我们的实验验证了我们在移动设备上从录制的视频中检索有意义的英语文本输入的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信