Waveform Compensation of ECG Data Using Segment Fitting Functions for Individual Identification

Chenguang He, Wei Li, David Chik
{"title":"Waveform Compensation of ECG Data Using Segment Fitting Functions for Individual Identification","authors":"Chenguang He, Wei Li, David Chik","doi":"10.1109/CIS.2017.00110","DOIUrl":null,"url":null,"abstract":"Physiological signals can be considered as a source of biometric characteristics that allow biometric identification. The aim of this research is to assess the effect of fitting methods on the morphological features of electrocardiogram (ECG) signals. Three different families of fitting functions have been selected to verify the performance of curve fitting. The experiment result shows that the fitting methods would be efficient for individual identification by ECG classification based on these fitting parameters.","PeriodicalId":304958,"journal":{"name":"2017 13th International Conference on Computational Intelligence and Security (CIS)","volume":"200 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 13th International Conference on Computational Intelligence and Security (CIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIS.2017.00110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Physiological signals can be considered as a source of biometric characteristics that allow biometric identification. The aim of this research is to assess the effect of fitting methods on the morphological features of electrocardiogram (ECG) signals. Three different families of fitting functions have been selected to verify the performance of curve fitting. The experiment result shows that the fitting methods would be efficient for individual identification by ECG classification based on these fitting parameters.
基于分段拟合函数的心电数据波形补偿
生理信号可以被认为是允许生物识别的生物特征的来源。本研究的目的是评估拟合方法对心电图(ECG)信号形态特征的影响。选择了三种不同的拟合函数族来验证曲线拟合的性能。实验结果表明,基于这些拟合参数的拟合方法能够有效地进行心电分类个体识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信