Dynamic Wireless Power Transfer Using an Isolated DC-DC Converter

Harshavardhan Yadav Gangadhara, K. Deepa
{"title":"Dynamic Wireless Power Transfer Using an Isolated DC-DC Converter","authors":"Harshavardhan Yadav Gangadhara, K. Deepa","doi":"10.1109/TEECCON54414.2022.9854514","DOIUrl":null,"url":null,"abstract":"The use of electric vehicles is increasing exponentially in the real world, to limit the usage of fossil fuels and reduce air pollution. At some point in the near future, internal combustion engine mobility will be overtaken by E-mobility. To gain an advantage over the conventional internal combustion engine, E-mobility has to increase its range. This range extension can be done by battery swapping, or by wireless power transfer. Wireless power transfer is an exponentially growing technology, researchers are working tirelessly and there is rapid development concerning range, size, high frequency, and efficiency. Wireless power transfer is a safer, reliable, cheap, and convenient topology for charging electric vehicles. Dynamic charging of the electric vehicle battery will reduce the need for heavy, large capacity, and costly batteries. In this paper, a dynamic inductive type wireless power transfer for the two-wheeler and last-mile delivery electric vehicles is proposed. Dynamic inductive type wireless power transfer transfers power from AC/DC supply wirelessly and an isolated DC-DC full-bridge converter is implemented at the receiver side to meet the battery requirement. LCL compensating network is used to reduce harmonics and switching losses. Simulations for the proposed system was carried out for the dynamic charging of electric vehicle battery in Matlab and, a comparision of rate of change of SoC with and without isolated DC-DC full-bridge converter is evaluated.","PeriodicalId":251455,"journal":{"name":"2022 Trends in Electrical, Electronics, Computer Engineering Conference (TEECCON)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Trends in Electrical, Electronics, Computer Engineering Conference (TEECCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TEECCON54414.2022.9854514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The use of electric vehicles is increasing exponentially in the real world, to limit the usage of fossil fuels and reduce air pollution. At some point in the near future, internal combustion engine mobility will be overtaken by E-mobility. To gain an advantage over the conventional internal combustion engine, E-mobility has to increase its range. This range extension can be done by battery swapping, or by wireless power transfer. Wireless power transfer is an exponentially growing technology, researchers are working tirelessly and there is rapid development concerning range, size, high frequency, and efficiency. Wireless power transfer is a safer, reliable, cheap, and convenient topology for charging electric vehicles. Dynamic charging of the electric vehicle battery will reduce the need for heavy, large capacity, and costly batteries. In this paper, a dynamic inductive type wireless power transfer for the two-wheeler and last-mile delivery electric vehicles is proposed. Dynamic inductive type wireless power transfer transfers power from AC/DC supply wirelessly and an isolated DC-DC full-bridge converter is implemented at the receiver side to meet the battery requirement. LCL compensating network is used to reduce harmonics and switching losses. Simulations for the proposed system was carried out for the dynamic charging of electric vehicle battery in Matlab and, a comparision of rate of change of SoC with and without isolated DC-DC full-bridge converter is evaluated.
使用隔离DC-DC转换器的动态无线电力传输
为了限制化石燃料的使用,减少空气污染,电动汽车的使用在现实世界中呈指数级增长。在不久的将来,内燃机汽车将被电动汽车所取代。为了获得优于传统内燃机的优势,电动汽车必须增加其行驶里程。这种范围扩展可以通过电池交换或无线电力传输来完成。无线传输技术是一项呈指数级增长的技术,研究人员孜孜不倦地进行着研究,在传输范围、传输规模、传输频率、传输效率等方面都有了长足的发展。无线电力传输是一种更安全、可靠、廉价、方便的电动汽车充电拓扑结构。电动汽车电池的动态充电将减少对笨重、大容量和昂贵的电池的需求。提出了一种适用于两轮电动车和最后一英里配送的动态感应式无线电力传输方案。动态感应式无线电源传输以无线方式传输AC/DC电源的功率,并在接收端实现隔离的DC-DC全桥转换器以满足电池要求。LCL补偿网络用于降低谐波和开关损耗。在Matlab中对所提出的系统进行了电动汽车电池动态充电的仿真,并对有无隔离式DC-DC全桥变换器的SoC变化率进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信