Simplified Algorithms for Canonical Polyadic Decomposition for Over-Complete Even Order Tensors (Ongoing Work)

A. Koochakzadeh, P. Pal
{"title":"Simplified Algorithms for Canonical Polyadic Decomposition for Over-Complete Even Order Tensors (Ongoing Work)","authors":"A. Koochakzadeh, P. Pal","doi":"10.1109/GlobalSIP.2018.8646691","DOIUrl":null,"url":null,"abstract":"This paper considers canonical polyadic (CP) decomposition of symmetric even order tensors. In earlier work, we showed that decomposition of such tensors is equivalent to solving a system of quadratic equations. As part of ongoing work, we further show that for almost all tensors, singular value decomposition of a certain matrix can uniquely obtain the solution to the system of quadratic equations. Our proposed algorithm is able to find the CP-decomposition, even in the regime where the CP-rank exceeds the dimensions of the tensor (overcomplete tensors).","PeriodicalId":119131,"journal":{"name":"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GlobalSIP.2018.8646691","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper considers canonical polyadic (CP) decomposition of symmetric even order tensors. In earlier work, we showed that decomposition of such tensors is equivalent to solving a system of quadratic equations. As part of ongoing work, we further show that for almost all tensors, singular value decomposition of a certain matrix can uniquely obtain the solution to the system of quadratic equations. Our proposed algorithm is able to find the CP-decomposition, even in the regime where the CP-rank exceeds the dimensions of the tensor (overcomplete tensors).
过完备偶阶张量正则多进分解的简化算法(正在进行)
研究对称偶阶张量的正则多进分解。在早期的工作中,我们证明了这种张量的分解等价于求解一个二次方程系统。作为正在进行的工作的一部分,我们进一步证明了对于几乎所有张量,某矩阵的奇异值分解可以唯一地获得二次方程系统的解。我们提出的算法能够找到cp -分解,即使在cp -秩超过张量的维数(过完备张量)的区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信