Efficient Early Anomaly Detection of Network Security Attacks Using Deep Learning

Tanwir Ahmad, D. Truscan
{"title":"Efficient Early Anomaly Detection of Network Security Attacks Using Deep Learning","authors":"Tanwir Ahmad, D. Truscan","doi":"10.1109/CSR57506.2023.10224923","DOIUrl":null,"url":null,"abstract":"We present a deep-learning (DL) anomaly-based Intrusion Detection System (IDS) for networked systems, which is able to detect in realtime anomalous network traffic corresponding to security attacks while they are ongoing. Compared to similar approaches, our IDS does not require a fixed number of network packets to analyze in order to make a decision on the type of traffic and it utilizes a more compact neural network which improves its realtime performance. As shown in the experiments using the CICIDS2017 and USTC-TFC-2016 datasets, the approach is able to detect anomalous traffic with high precision and recall. In addition, the approach is able to classify the network traffic by using only a very small portion of the network flows.","PeriodicalId":354918,"journal":{"name":"2023 IEEE International Conference on Cyber Security and Resilience (CSR)","volume":"11 7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Cyber Security and Resilience (CSR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSR57506.2023.10224923","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present a deep-learning (DL) anomaly-based Intrusion Detection System (IDS) for networked systems, which is able to detect in realtime anomalous network traffic corresponding to security attacks while they are ongoing. Compared to similar approaches, our IDS does not require a fixed number of network packets to analyze in order to make a decision on the type of traffic and it utilizes a more compact neural network which improves its realtime performance. As shown in the experiments using the CICIDS2017 and USTC-TFC-2016 datasets, the approach is able to detect anomalous traffic with high precision and recall. In addition, the approach is able to classify the network traffic by using only a very small portion of the network flows.
基于深度学习的网络安全攻击早期异常检测
我们提出了一种用于网络系统的基于深度学习(DL)异常的入侵检测系统(IDS),该系统能够实时检测与正在进行的安全攻击相对应的异常网络流量。与类似的方法相比,我们的IDS不需要固定数量的网络数据包来分析,以便对流量类型做出决定,并且它利用更紧凑的神经网络来提高其实时性能。使用CICIDS2017和USTC-TFC-2016数据集的实验表明,该方法能够以较高的准确率和召回率检测异常流量。此外,该方法仅使用很小一部分网络流就可以对网络流量进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信