Exponential Recurrent Associative Memories: Stability and Relative Capacity

M. Rajati, M. Menhaj, M. Korjani, A. Dehestani
{"title":"Exponential Recurrent Associative Memories: Stability and Relative Capacity","authors":"M. Rajati, M. Menhaj, M. Korjani, A. Dehestani","doi":"10.1109/ICTAI.2006.58","DOIUrl":null,"url":null,"abstract":"In this paper, relative capacity of a specific higher order Hopfield-type associative memory is considered. This model, which is known as exponential Hopfield neural network is suitable for hardware implementation and is not of a great computational cost. It is shown that, this modification of the Hopfield model significantly improves the storage capacity of the associative memory. We also classify the model via a stability measure, and study the effect of training the network with biased patterns on the stability","PeriodicalId":169424,"journal":{"name":"2006 18th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'06)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 18th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2006.58","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, relative capacity of a specific higher order Hopfield-type associative memory is considered. This model, which is known as exponential Hopfield neural network is suitable for hardware implementation and is not of a great computational cost. It is shown that, this modification of the Hopfield model significantly improves the storage capacity of the associative memory. We also classify the model via a stability measure, and study the effect of training the network with biased patterns on the stability
指数循环联想记忆:稳定性和相对容量
本文研究了一类特定高阶hopfield型联想存储器的相对容量。该模型被称为指数Hopfield神经网络,适合于硬件实现,并且计算成本不高。结果表明,对Hopfield模型的修改显著提高了联想记忆的存储容量。我们还通过稳定性测度对模型进行分类,并研究了带偏差模式的网络训练对稳定性的影响
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信