Building Noetherian Domains Inside an Ideal-adic Completion

W. Heinzer, C. Rotthaus, S. Wiegand
{"title":"Building Noetherian Domains Inside an Ideal-adic Completion","authors":"W. Heinzer, C. Rotthaus, S. Wiegand","doi":"10.1201/9780429187605-23","DOIUrl":null,"url":null,"abstract":"Suppose a is a nonzero nonunit of a Noetherian integral domain R. An interesting construction introduced by Ray Heitmann addresses the question of how ring-theoretically to adjoin a transcendental power series in a to the ring R. We apply this construction, and its natural generalization to finitely many elements, to exhibit Noetherian extension domains of R inside the (a)-adic completion R∗ of R. Suppose τ1, . . . , τs ∈ aR∗ are algebraically independent over K, the field of fractions of R. Starting with U0 := R[τ1, . . . , τs], there is a natural sequence of nested polynomial rings Un between R and A := K(τ1, . . . , τs) ∩ R∗. It is not hard to show that if U := ∪n=0Un is Noetherian, then A is a localization of U and R∗[1/a] is flat over U0. We prove, conversely, that if R∗[1/a] is flat over U0, then U is Noetherian and A := K(τ1, . . . , τs) ∩ R∗ is a localization of U . Thus the flatness of R∗[1/a] over U0 implies the intersection domain A is Noetherian.","PeriodicalId":139517,"journal":{"name":"abelian groups, module theory, and topology","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"abelian groups, module theory, and topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1201/9780429187605-23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Suppose a is a nonzero nonunit of a Noetherian integral domain R. An interesting construction introduced by Ray Heitmann addresses the question of how ring-theoretically to adjoin a transcendental power series in a to the ring R. We apply this construction, and its natural generalization to finitely many elements, to exhibit Noetherian extension domains of R inside the (a)-adic completion R∗ of R. Suppose τ1, . . . , τs ∈ aR∗ are algebraically independent over K, the field of fractions of R. Starting with U0 := R[τ1, . . . , τs], there is a natural sequence of nested polynomial rings Un between R and A := K(τ1, . . . , τs) ∩ R∗. It is not hard to show that if U := ∪n=0Un is Noetherian, then A is a localization of U and R∗[1/a] is flat over U0. We prove, conversely, that if R∗[1/a] is flat over U0, then U is Noetherian and A := K(τ1, . . . , τs) ∩ R∗ is a localization of U . Thus the flatness of R∗[1/a] over U0 implies the intersection domain A is Noetherian.
在理想补全中构建诺瑟域
假设a是Noetherian积分域R的非零非单位。Ray Heitmann提出了一个有趣的构造,解决了一个环如何在理论上将a中的超越幂级数与环R相邻的问题。我们应用这个构造,以及它对有限多元素的自然推广,来展示R的Noetherian扩展域在R的(a)进补全R *内。, τs∈aR∗在K上是代数无关的,R的分数域从U0开始:= R[τ1,…], τs],则在R和a之间存在一个嵌套多项式环的自然序列Un:= K(τ1,…)。, τs)∩R∗。不难证明,如果U:=∪n=0Un是诺etherian,则A是U的一个局部化,且R * [1/ A]在U0上是平坦的。相反地,我们证明如果R * [1/a]在U0上是平坦的,则U是诺etherian的,且a = K(τ1,…)。, τs)∩R *是U的一个局部化。因此R * [1/a]在U0上的平坦性意味着交域a是诺瑟域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信