Disparity Guided Texture Inpainting for Light Field View Synthesis

Yue Li, R. Mathew, D. Taubman
{"title":"Disparity Guided Texture Inpainting for Light Field View Synthesis","authors":"Yue Li, R. Mathew, D. Taubman","doi":"10.1109/DICTA.2018.8615821","DOIUrl":null,"url":null,"abstract":"Light fields, as a type of visual content, richer in textural and geometric information than traditional imaging, can exhibit strong redundancies between views. Disparity compensated prediction, as one of the view synthesis frameworks, can exploit these redundancies to achieve high coding efficiency. Properly handling texture occlusion in the prediction process is important. We propose a disparity guided texture inpainting scheme to resolve texture occlusion. It turns out that reliable disparity (depth) can be available within occluded regions. A key contribution of this paper is the incorporation of disparity to guide the pixel visiting order and the weighted-average interpolation processes of the inpainting scheme. Specifically, the paper describes a disparity-dependent boundary distance metric, which is evaluated using a Dijkstra's algorithm and used to drive inpainting decisions. Our proposed method is evaluated on a realistic dataset with complex geometry, presenting promising results.","PeriodicalId":130057,"journal":{"name":"2018 Digital Image Computing: Techniques and Applications (DICTA)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2018.8615821","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Light fields, as a type of visual content, richer in textural and geometric information than traditional imaging, can exhibit strong redundancies between views. Disparity compensated prediction, as one of the view synthesis frameworks, can exploit these redundancies to achieve high coding efficiency. Properly handling texture occlusion in the prediction process is important. We propose a disparity guided texture inpainting scheme to resolve texture occlusion. It turns out that reliable disparity (depth) can be available within occluded regions. A key contribution of this paper is the incorporation of disparity to guide the pixel visiting order and the weighted-average interpolation processes of the inpainting scheme. Specifically, the paper describes a disparity-dependent boundary distance metric, which is evaluated using a Dijkstra's algorithm and used to drive inpainting decisions. Our proposed method is evaluated on a realistic dataset with complex geometry, presenting promising results.
视差引导纹理绘制光场视图合成
光场作为一种视觉内容,比传统成像具有更丰富的纹理和几何信息,在视图之间会表现出很强的冗余性。视差补偿预测作为一种视图综合框架,可以利用这些冗余来达到较高的编码效率。在预测过程中正确处理纹理遮挡是很重要的。为了解决纹理遮挡问题,提出了一种视差引导的纹理绘制方案。结果表明,在被遮挡的区域内可以获得可靠的视差(深度)。本文的一个重要贡献是引入视差来指导像素访问顺序,并对绘制方案进行加权平均插值处理。具体来说,本文描述了一个差异相关的边界距离度量,该度量使用Dijkstra算法进行评估,并用于驱动喷漆决策。我们提出的方法在具有复杂几何形状的真实数据集上进行了评估,显示出令人满意的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信