Anchored Bayesian Gaussian mixture models

D. Kunkel, M. Peruggia
{"title":"Anchored Bayesian Gaussian mixture models","authors":"D. Kunkel, M. Peruggia","doi":"10.1214/20-ejs1756","DOIUrl":null,"url":null,"abstract":"Finite mixtures are a flexible modeling tool for irregularly shaped densities and samples from heterogeneous populations. When modeling with mixtures using an exchangeable prior on the component features, the component labels are arbitrary and are indistinguishable in posterior analysis. This makes it impossible to attribute any meaningful interpretation to the marginal posterior distributions of the component features. We propose a model in which a small number of observations are assumed to arise from some of the labeled component densities. The resulting model is not exchangeable, allowing inference on the component features without post-processing. Our method assigns meaning to the component labels at the modeling stage and can be justified as a data-dependent informative prior on the labelings. We show that our method produces interpretable results, often (but not always) similar to those resulting from relabeling algorithms, with the added benefit that the marginal inferences originate directly from a well specified probability model rather than a post hoc manipulation. We provide asymptotic results leading to practical guidelines for model selection that are motivated by maximizing prior information about the class labels and demonstrate our method on real and simulated data.","PeriodicalId":186390,"journal":{"name":"arXiv: Methodology","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Methodology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/20-ejs1756","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Finite mixtures are a flexible modeling tool for irregularly shaped densities and samples from heterogeneous populations. When modeling with mixtures using an exchangeable prior on the component features, the component labels are arbitrary and are indistinguishable in posterior analysis. This makes it impossible to attribute any meaningful interpretation to the marginal posterior distributions of the component features. We propose a model in which a small number of observations are assumed to arise from some of the labeled component densities. The resulting model is not exchangeable, allowing inference on the component features without post-processing. Our method assigns meaning to the component labels at the modeling stage and can be justified as a data-dependent informative prior on the labelings. We show that our method produces interpretable results, often (but not always) similar to those resulting from relabeling algorithms, with the added benefit that the marginal inferences originate directly from a well specified probability model rather than a post hoc manipulation. We provide asymptotic results leading to practical guidelines for model selection that are motivated by maximizing prior information about the class labels and demonstrate our method on real and simulated data.
锚定贝叶斯高斯混合模型
有限混合是一种灵活的建模工具,用于不规则形状的密度和来自异质种群的样本。当使用组件特征上的可交换先验进行混合建模时,组件标签是任意的,并且在后验分析中无法区分。这使得不可能将任何有意义的解释归因于组成特征的边际后验分布。我们提出了一个模型,在这个模型中,假设少量的观察结果来自一些标记的成分密度。生成的模型是不可交换的,允许在没有后处理的情况下对组件特征进行推断。我们的方法在建模阶段为组件标签分配了意义,并且可以证明为标签上的数据依赖信息。我们表明,我们的方法产生了可解释的结果,通常(但并不总是)与重新标记算法产生的结果相似,附带的好处是,边际推断直接来自一个明确指定的概率模型,而不是事后操纵。我们提供了渐近的结果,从而为模型选择提供了实用的指导方针,这些指导方针是通过最大化关于类标签的先验信息来激励的,并在真实和模拟数据上展示了我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信