Combining depth-estimation-based multi-spectral photometric stereo and SLAM for real-time dense 3D reconstruction

Yuanhong Xu, Pei Dong, Liang Lu, Junyu Dong, Lin Qi
{"title":"Combining depth-estimation-based multi-spectral photometric stereo and SLAM for real-time dense 3D reconstruction","authors":"Yuanhong Xu, Pei Dong, Liang Lu, Junyu Dong, Lin Qi","doi":"10.1145/3290420.3290458","DOIUrl":null,"url":null,"abstract":"Obtaining dense 3D reconstruction with low computational cost is one of the important goals in the field of Simultaneous Localization and Mapping (SLAM). In this paper we propose a dense 3D reconstruction framework from monocular multi-spectral video sequences using jointly semi-dense SLAM and depth-estimation-based Multi-spectral Photometric Stereo approaches. Starting from multi-spectral video, we use SALM to reconstruct a semi-dense 3D shape that will be densified. Then the depth maps estimated via conditional Generative Adversarial Nets (cGAN) are fed as priors into optimization-based multi-spectral photometric stereo for dense surface normal recovery. Finally, we use camera poses for view conversion in fusion procedure where we combine the relative sparse point cloud with the dense surface normal to get a dense point cloud. Experiments show that our method can effectively obtain denser 3D reconstruction.","PeriodicalId":259201,"journal":{"name":"International Conference on Critical Infrastructure Protection","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Critical Infrastructure Protection","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3290420.3290458","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Obtaining dense 3D reconstruction with low computational cost is one of the important goals in the field of Simultaneous Localization and Mapping (SLAM). In this paper we propose a dense 3D reconstruction framework from monocular multi-spectral video sequences using jointly semi-dense SLAM and depth-estimation-based Multi-spectral Photometric Stereo approaches. Starting from multi-spectral video, we use SALM to reconstruct a semi-dense 3D shape that will be densified. Then the depth maps estimated via conditional Generative Adversarial Nets (cGAN) are fed as priors into optimization-based multi-spectral photometric stereo for dense surface normal recovery. Finally, we use camera poses for view conversion in fusion procedure where we combine the relative sparse point cloud with the dense surface normal to get a dense point cloud. Experiments show that our method can effectively obtain denser 3D reconstruction.
基于深度估计的多光谱测光立体与SLAM相结合进行实时密集三维重建
以低计算成本获得密集的三维重建是同步定位与制图(SLAM)领域的重要目标之一。本文提出了一种基于半密集SLAM和基于深度估计的多光谱光度立体方法的单眼多光谱视频序列密集三维重建框架。从多光谱视频开始,我们使用SALM重建半密集的3D形状,将其致密化。然后将条件生成对抗网络(conditional Generative Adversarial Nets, cGAN)估计的深度图作为先验输入到基于优化的多光谱光度立体图像中,用于密集表面法向恢复。最后,我们在融合过程中使用相机姿态进行视图转换,将相对稀疏的点云与密集的表面法线相结合,得到密集的点云。实验表明,该方法可以有效地获得更密集的三维重建。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信