Ranking of Aircraft Fuel-Injectors Regarding Low Frequency Thermoacoustics Based on an Energy Balance Method

A. Fischer, Claus Lahiri
{"title":"Ranking of Aircraft Fuel-Injectors Regarding Low Frequency Thermoacoustics Based on an Energy Balance Method","authors":"A. Fischer, Claus Lahiri","doi":"10.1115/gt2021-59561","DOIUrl":null,"url":null,"abstract":"\n Many modern low emission combustion systems suffer from thermoacoustic instabilities, which may lead to customer irritation (noise) or engine damages. The prediction of the frequency response of the flame is oftentimes not straightforward, so that it is common practice to measure the flame response in an experiment. The outcome of the measurement is typically a flame transfer-function (FTF), which can be used in low order acoustic network models to represent the flame. This paper applies an alternative criterion to evaluate the potential of the flame to become instable, the flame-amplification factor (FAF). It is based on an energy balance method and can be directly derived from the measured flame-transfer-matrix (FTM). In order to demonstrate this approach two different kerosene-driven aircraft fuel injectors were measured in the Rolls-Royce SCARLET rig in a single-sector RQL-combustor under realistic operating conditions. Here the multi-microphone method has been applied with acoustic forcing from up- and downstream side to determine the FTM. In contrast to the FTF-approach the full FTM data has been post-processed to derive the FAF. The FAF is then successfully used to rank the fuel injectors regarding their low frequency thermo-acoustic behaviour, because it is proportional to amplitudes of self-excited frequencies in FANN-rig (full annular) configuration.","PeriodicalId":395231,"journal":{"name":"Volume 3B: Combustion, Fuels, and Emissions","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 3B: Combustion, Fuels, and Emissions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/gt2021-59561","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Many modern low emission combustion systems suffer from thermoacoustic instabilities, which may lead to customer irritation (noise) or engine damages. The prediction of the frequency response of the flame is oftentimes not straightforward, so that it is common practice to measure the flame response in an experiment. The outcome of the measurement is typically a flame transfer-function (FTF), which can be used in low order acoustic network models to represent the flame. This paper applies an alternative criterion to evaluate the potential of the flame to become instable, the flame-amplification factor (FAF). It is based on an energy balance method and can be directly derived from the measured flame-transfer-matrix (FTM). In order to demonstrate this approach two different kerosene-driven aircraft fuel injectors were measured in the Rolls-Royce SCARLET rig in a single-sector RQL-combustor under realistic operating conditions. Here the multi-microphone method has been applied with acoustic forcing from up- and downstream side to determine the FTM. In contrast to the FTF-approach the full FTM data has been post-processed to derive the FAF. The FAF is then successfully used to rank the fuel injectors regarding their low frequency thermo-acoustic behaviour, because it is proportional to amplitudes of self-excited frequencies in FANN-rig (full annular) configuration.
基于能量平衡法的飞机喷油器低频热声学排序
许多现代低排放燃烧系统都存在热声不稳定的问题,这可能会导致用户的烦躁(噪音)或发动机损坏。火焰频率响应的预测往往不是直接的,所以通常的做法是在实验中测量火焰响应。测量的结果通常是火焰传递函数(FTF),它可以用于低阶声学网络模型来表示火焰。本文采用火焰放大系数(FAF)作为评价火焰失稳可能性的另一种判据。它基于能量平衡法,可以直接从测量的火焰传递矩阵(FTM)中导出。为了验证该方法的可行性,在实际操作条件下,在Rolls-Royce SCARLET的单扇形rql燃烧室中测量了两个不同的煤油驱动飞机燃油喷射器。本文采用多传声器法,结合上下侧的声强迫来确定FTM。与ftf方法相反,完整的FTM数据已被后处理以导出FAF。FAF随后被成功地用于对喷油器的低频热声行为进行排序,因为它与FANN-rig(全环空)配置中的自激频率幅值成正比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信