6D SLAM with approximate data association

A. Nüchter, K. Lingemann, J. Hertzberg, H. Surmann
{"title":"6D SLAM with approximate data association","authors":"A. Nüchter, K. Lingemann, J. Hertzberg, H. Surmann","doi":"10.1109/ICAR.2005.1507419","DOIUrl":null,"url":null,"abstract":"This paper provides a new solution to the simultaneous localization and mapping (SLAM) problem with six degrees of freedom. A fast variant of the iterative closest points (ICP) algorithm registers 3D scans taken by a mobile robot into a common coordinate system and thus provides relocalization. Hereby, data association is reduced to the problem of searching for closest points. Approximation algorithms for this searching, namely, approximate kd-trees and box decomposition trees, are presented and evaluated in this paper. A solution to 6D SLAM that considers all free parameters in the robot pose is built based on 3D scan matching","PeriodicalId":428475,"journal":{"name":"ICAR '05. Proceedings., 12th International Conference on Advanced Robotics, 2005.","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"165","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICAR '05. Proceedings., 12th International Conference on Advanced Robotics, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAR.2005.1507419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 165

Abstract

This paper provides a new solution to the simultaneous localization and mapping (SLAM) problem with six degrees of freedom. A fast variant of the iterative closest points (ICP) algorithm registers 3D scans taken by a mobile robot into a common coordinate system and thus provides relocalization. Hereby, data association is reduced to the problem of searching for closest points. Approximation algorithms for this searching, namely, approximate kd-trees and box decomposition trees, are presented and evaluated in this paper. A solution to 6D SLAM that considers all free parameters in the robot pose is built based on 3D scan matching
近似数据关联的6D SLAM
本文提出了一种新的六自由度同步定位与制图方法。迭代最近点(ICP)算法的一种快速变体将移动机器人进行的3D扫描注册到一个公共坐标系中,从而提供重新定位。因此,数据关联被简化为寻找最近点的问题。本文提出并评价了这种搜索的近似算法,即近似kd树和盒分解树。基于三维扫描匹配,建立了一个考虑机器人姿态中所有自由参数的6D SLAM解决方案
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信