{"title":"The 𝑚=2 amplituhedron and the hypersimplex: Signs, clusters, tilings, Eulerian numbers","authors":"M. Parisi, M. Sherman-Bennett, Lauren Williams","doi":"10.1090/cams/23","DOIUrl":null,"url":null,"abstract":"<p>The hypersimplex <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Delta Subscript k plus 1 comma n\">\n <mml:semantics>\n <mml:msub>\n <mml:mi mathvariant=\"normal\">Δ<!-- Δ --></mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>k</mml:mi>\n <mml:mo>+</mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mi>n</mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">\\Delta _{k+1,n}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is the image of the positive Grassmannian <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G r Subscript k plus 1 comma n Superscript greater-than-or-equal-to 0\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>G</mml:mi>\n <mml:msubsup>\n <mml:mi>r</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>k</mml:mi>\n <mml:mo>+</mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mi>n</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>≥<!-- ≥ --></mml:mo>\n <mml:mn>0</mml:mn>\n </mml:mrow>\n </mml:msubsup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">Gr^{\\geq 0}_{k+1,n}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> under the moment map. It is a polytope of dimension <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n minus 1\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>n</mml:mi>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">n-1</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> in <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper R Superscript n\">\n <mml:semantics>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">R</mml:mi>\n </mml:mrow>\n <mml:mi>n</mml:mi>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {R}^n</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. Meanwhile, the amplituhedron <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper A Subscript n comma k comma 2 Baseline left-parenthesis upper Z right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">A</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>n</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>k</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mn>2</mml:mn>\n </mml:mrow>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>Z</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathcal {A}_{n,k,2}(Z)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is the projection of the positive Grassmannian <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G r Subscript k comma n Superscript greater-than-or-equal-to 0\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>G</mml:mi>\n <mml:msubsup>\n <mml:mi>r</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>k</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>n</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>≥<!-- ≥ --></mml:mo>\n <mml:mn>0</mml:mn>\n </mml:mrow>\n </mml:msubsup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">Gr^{\\geq 0}_{k,n}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> into the Grassmannian <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G r Subscript k comma k plus 2\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>G</mml:mi>\n <mml:msub>\n <mml:mi>r</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>k</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>k</mml:mi>\n <mml:mo>+</mml:mo>\n <mml:mn>2</mml:mn>\n </mml:mrow>\n </mml:msub>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">Gr_{k,k+2}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> under a map <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper Z overTilde\">\n <mml:semantics>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mover>\n <mml:mi>Z</mml:mi>\n <mml:mo stretchy=\"false\">~<!-- ~ --></mml:mo>\n </mml:mover>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\tilde {Z}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> induced by a positive matrix <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper Z element-of upper M a t Subscript n comma k plus 2 Superscript greater-than 0\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>Z</mml:mi>\n <mml:mo>∈<!-- ∈ --></mml:mo>\n <mml:mi>M</mml:mi>\n <mml:mi>a</mml:mi>\n <mml:msubsup>\n <mml:mi>t</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>n</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>k</mml:mi>\n <mml:mo>+</mml:mo>\n <mml:mn>2</mml:mn>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>></mml:mo>\n <mml:mn>0</mml:mn>\n </mml:mrow>\n </mml:msubsup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">Z\\in Mat_{n,k+2}^{>0}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. Introduced in the context of <italic>scattering amplitudes</italic>, it is not a polytope, and has full dimension <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"2 k\">\n <mml:semantics>\n <mml:mrow>\n <mml:mn>2</mml:mn>\n <mml:mi>k</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">2k</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> inside <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G r Subscript k comma k plus 2\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>G</mml:mi>\n <mml:msub>\n <mml:mi>r</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>k</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>k</mml:mi>\n <mml:mo>+</mml:mo>\n <mml:mn>2</mml:mn>\n </mml:mrow>\n </mml:msub>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">Gr_{k,k+2}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. Nevertheless, there seem to be remarkable connections between these two objects via <italic>T-duality</italic>, as conjectured by Łukowski, Parisi, and Williams [Int. Math. Res. Not. (2023)]. In this paper we use ideas from oriented matroid theory, total positivity, and the geometry of the hypersimplex and positroid polytopes to obtain a deeper understanding of the amplituhedron. We show that the inequalities cutting out <italic>positroid polytopes</italic>—images of positroid cells of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G r Subscript k plus 1 comma n Superscript greater-than-or-equal-to 0\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>G</mml:mi>\n <mml:msubsup>\n <mml:mi>r</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>k</mml:mi>\n <mml:mo>+</mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mi>n</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>≥<!-- ≥ --></mml:mo>\n <mml:mn>0</mml:mn>\n </mml:mrow>\n </mml:msubsup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">Gr^{\\geq 0}_{k+1,n}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> under the moment map—translate into sign conditions characterizing the T-dual <italic>Grasstopes</italic>—images of positroid cells of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G r Subscript k comma n Superscript greater-than-or-equal-to 0\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>G</mml:mi>\n <mml:msubsup>\n <mml:mi>r</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>k</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>n</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>≥<!-- ≥ --></mml:mo>\n <mml:mn>0</mml:mn>\n </mml:mrow>\n </mml:msubsup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">Gr^{\\geq 0}_{k,n}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> under <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper Z overTilde\">\n <mml:semantics>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mover>\n <mml:mi>Z</mml:mi>\n <mml:mo stretchy=\"false\">~<!-- ~ --></mml:mo>\n </mml:mover>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\tilde {Z}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. Moreover, we subdivide the amplituhedron into <italic>chambers</italic>, just as the hypersimplex can be subdivided into simplices, with both chambers and simplices enumerated by the Eulerian numbers. We use these properties to prove ","PeriodicalId":285678,"journal":{"name":"Communications of the American Mathematical Society","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications of the American Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/cams/23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
The hypersimplex Δk+1,n\Delta _{k+1,n} is the image of the positive Grassmannian Grk+1,n≥0Gr^{\geq 0}_{k+1,n} under the moment map. It is a polytope of dimension n−1n-1 in Rn\mathbb {R}^n. Meanwhile, the amplituhedron An,k,2(Z)\mathcal {A}_{n,k,2}(Z) is the projection of the positive Grassmannian Grk,n≥0Gr^{\geq 0}_{k,n} into the Grassmannian Grk,k+2Gr_{k,k+2} under a map Z~\tilde {Z} induced by a positive matrix Z∈Matn,k+2>0Z\in Mat_{n,k+2}^{>0}. Introduced in the context of scattering amplitudes, it is not a polytope, and has full dimension 2k2k inside Grk,k+2Gr_{k,k+2}. Nevertheless, there seem to be remarkable connections between these two objects via T-duality, as conjectured by Łukowski, Parisi, and Williams [Int. Math. Res. Not. (2023)]. In this paper we use ideas from oriented matroid theory, total positivity, and the geometry of the hypersimplex and positroid polytopes to obtain a deeper understanding of the amplituhedron. We show that the inequalities cutting out positroid polytopes—images of positroid cells of Grk+1,n≥0Gr^{\geq 0}_{k+1,n} under the moment map—translate into sign conditions characterizing the T-dual Grasstopes—images of positroid cells of Grk,n≥0Gr^{\geq 0}_{k,n} under Z~\tilde {Z}. Moreover, we subdivide the amplituhedron into chambers, just as the hypersimplex can be subdivided into simplices, with both chambers and simplices enumerated by the Eulerian numbers. We use these properties to prove
《hypersimplex Δ k + 1 , n \ 三角洲的{k + 1, n}是阳性Grassmannian形象》 G r k + 1 , n ≥ 0 Gr ^ {\ geq 0} {k + 1, n}下的《地图的时刻。这是a的polytope维度 n−1 n-1 in R n \ mathbb {R) ^ n。Meanwhile, the amplituhedron A n , k , 2 ( Z ) \ mathcal {A} {n, k, 2}的投射》(Z)是阳性Grassmannian G r k , n ≥ 0 Gr ^ {\ geq 0} {k, n}》的Grassmannian G r k ,k + 2 Gr_ {k, k + 2下的a地图 Z ~ \ 蒂尔德{Z} induced by a阳性矩阵 公元Z∈a t n , k + 2 > 0 Z \在Mat_ {n, k + 2) ^{> 0}。在散射振幅的背景下进行介绍,它不是一个多边形,里面有一个2k的尺寸在Gr r k,k+2 G {k,k+2}。Nevertheless,那里似乎成为非凡的connections这些通过T-duality两个物体之间,美国conjectured由Łukowski,帕里和威廉姆斯(Int)。数学。Res音符。(2023)。在这篇文章中,我们用的是来自东方matroid理论的概念,全正常性,以及高度对称和波利托对偶的几何知识。我们那个节目《不平等卡特房positroid polytopes——images of positroid细胞of G r k + 1 , n ≥ 0 Gr ^ {\ geq 0} {k + 1, n}下的《地图的时刻——翻译进入签约条件characterizing T-dual Grasstopes——images of positroid细胞of G r k ,n ≥ 0 Gr ^ {\ geq 0} {k, n}下的 Z ~ \ 蒂尔德{Z}。更重要的是,我们把振幅移植到钱伯斯,就像超硬化剂可以移植到钱伯斯,由长老会的数字修剪。我们用这些属性来证明