Opinion Mining of Twitter Events using Supervised Learning

Nida Hakak, Mahira Kirmani
{"title":"Opinion Mining of Twitter Events using Supervised Learning","authors":"Nida Hakak, Mahira Kirmani","doi":"10.4018/IJSE.2018070102","DOIUrl":null,"url":null,"abstract":"Micro-blogs are a powerful tool to express an opinion. Twitter is one of the fastest growing micro-blogs and has more than 900 million users. Twitter is a rich source of opinion as users share their daily experience of life and respond to specific events using tweets on twitter. In this article, an automatic opinion classifier capable of automatically classifying tweets into different opinions expressed by them is developed. Also, a manually annotated corpus for opinion mining to be used by supervised learning algorithms is designed. An opinion classifier uses semantic, lexical, domain dependent, and context features for classification. Results obtained confirm competitive performance and the robustness of the system. Classifier accuracy is more than 75.05%, which is higher than the baseline accuracy.","PeriodicalId":272943,"journal":{"name":"Int. J. Synth. Emot.","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Synth. Emot.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJSE.2018070102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Micro-blogs are a powerful tool to express an opinion. Twitter is one of the fastest growing micro-blogs and has more than 900 million users. Twitter is a rich source of opinion as users share their daily experience of life and respond to specific events using tweets on twitter. In this article, an automatic opinion classifier capable of automatically classifying tweets into different opinions expressed by them is developed. Also, a manually annotated corpus for opinion mining to be used by supervised learning algorithms is designed. An opinion classifier uses semantic, lexical, domain dependent, and context features for classification. Results obtained confirm competitive performance and the robustness of the system. Classifier accuracy is more than 75.05%, which is higher than the baseline accuracy.
基于监督学习的Twitter事件意见挖掘
微博是表达观点的有力工具。推特是发展最快的微博之一,拥有超过9亿用户。Twitter是一个丰富的意见来源,用户可以在Twitter上分享他们的日常生活经历,并对特定事件做出回应。本文开发了一种自动观点分类器,能够将tweets自动分类为tweets所表达的不同观点。此外,还设计了一个用于监督学习算法的意见挖掘的人工标注语料库。意见分类器使用语义、词汇、领域相关和上下文特征进行分类。结果表明,该系统具有良好的竞争性能和鲁棒性。分类器准确率大于75.05%,高于基线准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信