Renormalized solutions for nonlinear anisotropic parabolic equations

A. Salmani, Y. Akdim, M. Mekkour
{"title":"Renormalized solutions for nonlinear anisotropic parabolic equations","authors":"A. Salmani, Y. Akdim, M. Mekkour","doi":"10.1109/ISACS48493.2019.9068873","DOIUrl":null,"url":null,"abstract":"In this paper, we establish the existence of a renormalized solutions of anisotropic parabolic operators of the type <tex>$\\frac{\\partial b(x,u)}{\\partial t}-\\sum\\limits_{i=1}^{N}\\partial_{i}a_{i}(x, t, u, \\nabla u)=f$</tex> and <tex>$b(x, u)(t\\ =\\ 0) = b(x, u_{0})$</tex>, where the right hand side <tex>$f$</tex>’ belongs to <tex>$L^{1}(Q_{T})$</tex> and <tex>$b(x, u_{0})$</tex> belongs to <tex>$L^{1}(\\Omega)$</tex>. The function <tex>$b(x, u)$</tex> is unbounded on u, the operator <tex>$-\\sum_{i=1}^{N}\\partial_{i}a_{i}(x, t, u, \\nabla u)$</tex> is a Leray-Lions operator.","PeriodicalId":312521,"journal":{"name":"2019 International Conference on Intelligent Systems and Advanced Computing Sciences (ISACS)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Intelligent Systems and Advanced Computing Sciences (ISACS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISACS48493.2019.9068873","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we establish the existence of a renormalized solutions of anisotropic parabolic operators of the type $\frac{\partial b(x,u)}{\partial t}-\sum\limits_{i=1}^{N}\partial_{i}a_{i}(x, t, u, \nabla u)=f$ and $b(x, u)(t\ =\ 0) = b(x, u_{0})$, where the right hand side $f$’ belongs to $L^{1}(Q_{T})$ and $b(x, u_{0})$ belongs to $L^{1}(\Omega)$. The function $b(x, u)$ is unbounded on u, the operator $-\sum_{i=1}^{N}\partial_{i}a_{i}(x, t, u, \nabla u)$ is a Leray-Lions operator.
非线性各向异性抛物方程的重整化解
本文建立了$\frac{\partial b(x,u)}{\partial t}-\sum\limits_{i=1}^{N}\partial_{i}a_{i}(x, t, u, \nabla u)=f$和$b(x, u)(t\ =\ 0) = b(x, u_{0})$型各向异性抛物算子的重整解的存在性,其中右侧的$f$ '属于$L^{1}(Q_{T})$, $b(x, u_{0})$属于$L^{1}(\Omega)$。函数$b(x, u)$在u上是无界的,操作符$-\sum_{i=1}^{N}\partial_{i}a_{i}(x, t, u, \nabla u)$是Leray-Lions操作符。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信