Measuring the Information-Foraging Behaviors of Social Bots Through Word Usage

Zachary Kimo Stine, Tuja Khaund, Nitin Agarwal
{"title":"Measuring the Information-Foraging Behaviors of Social Bots Through Word Usage","authors":"Zachary Kimo Stine, Tuja Khaund, Nitin Agarwal","doi":"10.1109/ASONAM.2018.8508811","DOIUrl":null,"url":null,"abstract":"Automated social bots are reported to account for a large sum of activity on social media sites such as Twitter. In this short paper, we study the information-foraging behaviors of social media users including bots. We present here a preliminary investigation which compares the behaviors of a set of suspected bots with non-automated accounts. To do so, we measure the distance between word distributions on a daily basis. We posit that this methodology provides a quantitative measure of behavior, which allows for more rigorous descriptions of bot behaviors that move beyond the assumption of bots as a monolithic category.","PeriodicalId":135949,"journal":{"name":"2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASONAM.2018.8508811","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Automated social bots are reported to account for a large sum of activity on social media sites such as Twitter. In this short paper, we study the information-foraging behaviors of social media users including bots. We present here a preliminary investigation which compares the behaviors of a set of suspected bots with non-automated accounts. To do so, we measure the distance between word distributions on a daily basis. We posit that this methodology provides a quantitative measure of behavior, which allows for more rigorous descriptions of bot behaviors that move beyond the assumption of bots as a monolithic category.
通过词汇使用来衡量社交机器人的信息采集行为
据报道,自动社交机器人在Twitter等社交媒体网站上占据了很大一部分活动。在这篇短文中,我们研究包括机器人在内的社交媒体用户的信息觅食行为。我们在这里提出了一项初步调查,比较了一组可疑机器人与非自动账户的行为。为此,我们每天测量单词分布之间的距离。我们假设这种方法提供了一种行为的定量测量,它允许对机器人行为进行更严格的描述,超越了机器人作为一个整体类别的假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信