Xor-Magic Graphs

J. Siehler
{"title":"Xor-Magic Graphs","authors":"J. Siehler","doi":"10.2478/rmm-2019-0004","DOIUrl":null,"url":null,"abstract":"Abstract A connected graph on 2n vertices is defined to be xor-magic if the vertices can be labeled with distinct n-bit binary numbers in such a way that the label at each vertex is equal to the bitwise xor of the labels on the adjacent vertices. We show that there is at least one 3-regular xor-magic graph on 2n vertices for every n ⩾ 2. We classify the 3-regular xor-magic graphs on 8 and 16 vertices, and give multiple examples of 3-regular xor-magic graphs on 32 vertices, including the well-known Dyck graph.","PeriodicalId":120489,"journal":{"name":"Recreational Mathematics Magazine","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recreational Mathematics Magazine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/rmm-2019-0004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract A connected graph on 2n vertices is defined to be xor-magic if the vertices can be labeled with distinct n-bit binary numbers in such a way that the label at each vertex is equal to the bitwise xor of the labels on the adjacent vertices. We show that there is at least one 3-regular xor-magic graph on 2n vertices for every n ⩾ 2. We classify the 3-regular xor-magic graphs on 8 and 16 vertices, and give multiple examples of 3-regular xor-magic graphs on 32 vertices, including the well-known Dyck graph.
Xor-Magic图
如果一个有2n个顶点的连通图可以用不同的n位二进制数标记,并且每个顶点的标记等于相邻顶点上标记的逐位xor,则定义为xor-magic。我们展示了在2n个顶点上对于每一个n大于或等于2的顶点至少有一个3-正则x -幻图。我们对8点和16点上的3正则x -幻图进行了分类,并给出了32点上的3正则x -幻图的多个例子,其中包括著名的Dyck图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信