The Effect of Bulk Density on Emission Behavior of Soil at Microwave Frequencies

V. Gupta, R. Jangid
{"title":"The Effect of Bulk Density on Emission Behavior of Soil at Microwave Frequencies","authors":"V. Gupta, R. Jangid","doi":"10.1155/2011/160129","DOIUrl":null,"url":null,"abstract":"Dielectric constant and dielectric loss ( and ) of different soil samples with bulk densities varying from 1.3 to 2.0 gm/cm3 are determined at a single microwave frequency 9.78 GHz and at temperature 37.0°C. Different bulk densities of same soil are achieved by filling the wave guide cell with an equal volume but a different mass of soil. Further, and of these soil samples are also estimated by semiempirical model and compared with the experimental results. The values of and increase as bulk density of the soil increases. In view of microwave remote sensing, the Fresnel reflectivity of soil is computed from the knowledge of the complex dielectric constant and the surface boundary condition. Using Kirchhoff’s reciprocity theorem the microwave emissivity is estimated from Fresnel reflectivity of the surface. It is observed that the microwave emission from the soil surface inhibits as bulk density of soil increases. Further, the roughness of soil surface has been taken into consideration in the emissivity computation and observed that the emissivity increases with increasing roughness of the soil surface.","PeriodicalId":232251,"journal":{"name":"International Journal of Microwave Science and Technology","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Microwave Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2011/160129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

Dielectric constant and dielectric loss ( and ) of different soil samples with bulk densities varying from 1.3 to 2.0 gm/cm3 are determined at a single microwave frequency 9.78 GHz and at temperature 37.0°C. Different bulk densities of same soil are achieved by filling the wave guide cell with an equal volume but a different mass of soil. Further, and of these soil samples are also estimated by semiempirical model and compared with the experimental results. The values of and increase as bulk density of the soil increases. In view of microwave remote sensing, the Fresnel reflectivity of soil is computed from the knowledge of the complex dielectric constant and the surface boundary condition. Using Kirchhoff’s reciprocity theorem the microwave emissivity is estimated from Fresnel reflectivity of the surface. It is observed that the microwave emission from the soil surface inhibits as bulk density of soil increases. Further, the roughness of soil surface has been taken into consideration in the emissivity computation and observed that the emissivity increases with increasing roughness of the soil surface.
体积密度对土壤微波发射特性的影响
在单微波频率9.78 GHz和温度37.0℃条件下,测定了体积密度在1.3 ~ 2.0 gm/cm3范围内不同土壤样品的介电常数和介电损耗。用体积相等但质量不同的土体填充导波槽,可获得相同土体的不同容重。在此基础上,利用半经验模型对土样的温度进行了估计,并与试验结果进行了比较。的值随土壤容重的增大而增大。针对微波遥感,利用土壤的复介电常数和表面边界条件计算土壤的菲涅耳反射率。利用基尔霍夫互易定理,从表面的菲涅耳反射率估计微波发射率。土壤表面的微波辐射随土壤容重的增加而受到抑制。此外,在计算发射率时考虑了土壤表面的粗糙度,发现发射率随土壤表面粗糙度的增加而增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信