Joint Bayesian Spatial Inversion of Lithology/fluid Classes, Petrophysical Properties and Elastic Attributes

T. Fjeldstad, D. Grana, H. Omre
{"title":"Joint Bayesian Spatial Inversion of Lithology/fluid Classes, Petrophysical Properties and Elastic Attributes","authors":"T. Fjeldstad, D. Grana, H. Omre","doi":"10.3997/2214-4609.201902272","DOIUrl":null,"url":null,"abstract":"Summary We consider joint prediction of lithology/fluid classes, petrophysical properties and elastic attributes in a Bayesian spatial framework based on a set of geophysical observations. A probabilistic model accounting for both vertical and lateral spatial dependency is proposed based on a Markov random field prior model for the lithology/fluid classes. We discuss in specific the rock physics model for the elastic attributes, which is well-known to be multimodal and skewed due to the presence of different lithology/fluid classes and saturation effects of the subsurface. The posterior model is assessed by an efficient Markov chain Monte Carlo algorithm. The proposed workflow is demonstrated on a Norwegian Sea gas discovery, with realistic spatial continuity in the predictions.","PeriodicalId":186806,"journal":{"name":"Petroleum Geostatistics 2019","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum Geostatistics 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3997/2214-4609.201902272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Summary We consider joint prediction of lithology/fluid classes, petrophysical properties and elastic attributes in a Bayesian spatial framework based on a set of geophysical observations. A probabilistic model accounting for both vertical and lateral spatial dependency is proposed based on a Markov random field prior model for the lithology/fluid classes. We discuss in specific the rock physics model for the elastic attributes, which is well-known to be multimodal and skewed due to the presence of different lithology/fluid classes and saturation effects of the subsurface. The posterior model is assessed by an efficient Markov chain Monte Carlo algorithm. The proposed workflow is demonstrated on a Norwegian Sea gas discovery, with realistic spatial continuity in the predictions.
岩性/流体类别、岩石物性和弹性属性的联合贝叶斯空间反演
基于一系列地球物理观测,我们考虑在贝叶斯空间框架中对岩性/流体类别、岩石物理性质和弹性属性进行联合预测。基于马尔可夫随机场先验模型,提出了考虑岩性/流体类别垂直和横向空间依赖性的概率模型。我们具体讨论了弹性属性的岩石物理模型,众所周知,由于存在不同的岩性/流体类别和地下饱和度效应,该模型具有多模态和偏斜性。后验模型采用一种有效的马尔可夫链蒙特卡罗算法进行评估。提出的工作流程在挪威海的一个天然气发现中得到了验证,在预测中具有现实的空间连续性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信