Maghrebian Accent Recognition Using SVM Classifier and MFCC Features

K. Mebarkia, A. Reffad, Rania Maatoug
{"title":"Maghrebian Accent Recognition Using SVM Classifier and MFCC Features","authors":"K. Mebarkia, A. Reffad, Rania Maatoug","doi":"10.1109/SSD54932.2022.9955877","DOIUrl":null,"url":null,"abstract":"This work aims to design a system to automatically recognize the accent of Maghrebian speakers (Algerian, Tunisian and Moroccan). The recognition system is a support vector machine (SVM) classifier fed by the well-known Mel frequency cepstral coefficients (MFCC) features and their derivatives. The SVM classifier was trained and tested using database of 30 speakers from the three accents. The cumulative sum of the ranked MFCC features seems to have more discrimination between accents than the MFCC features and reaches a classification accuracy of 91.7%.","PeriodicalId":253898,"journal":{"name":"2022 19th International Multi-Conference on Systems, Signals & Devices (SSD)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 19th International Multi-Conference on Systems, Signals & Devices (SSD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSD54932.2022.9955877","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work aims to design a system to automatically recognize the accent of Maghrebian speakers (Algerian, Tunisian and Moroccan). The recognition system is a support vector machine (SVM) classifier fed by the well-known Mel frequency cepstral coefficients (MFCC) features and their derivatives. The SVM classifier was trained and tested using database of 30 speakers from the three accents. The cumulative sum of the ranked MFCC features seems to have more discrimination between accents than the MFCC features and reaches a classification accuracy of 91.7%.
基于SVM分类器和MFCC特征的马格里布口音识别
这项工作旨在设计一个系统来自动识别马格里布人(阿尔及利亚人、突尼斯人和摩洛哥人)的口音。该识别系统是一种支持向量机(SVM)分类器,该分类器由著名的Mel频率倒谱系数(MFCC)特征及其导数提供。使用三种口音的30个说话者的数据库对SVM分类器进行了训练和测试。排序后的MFCC特征的累积和似乎比MFCC特征更能区分口音,分类准确率达到91.7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信