Novel DV-hop algorithm-based machines learning technics for node localization in rang-free wireless sensor networks

Oumaima Liouane, S. Femmam, T. Bakir, Abdessalem Ben Abdelali
{"title":"Novel DV-hop algorithm-based machines learning technics for node localization in rang-free wireless sensor networks","authors":"Oumaima Liouane, S. Femmam, T. Bakir, Abdessalem Ben Abdelali","doi":"10.11591/ijict.v12i2.pp140-149","DOIUrl":null,"url":null,"abstract":"Localization is a critical concern in many wireless sensor network (WSN) applications. Furthermore, correct information regarding the geographic placements of nodes (sensors) is critical for making the collected data valuable and relevant. Because of their benefits, such as simplicity and acceptable accuracy, the based connectivity algorithms attempt to localize multi-hop WSN. However, due to environmental factors, the precision of localisation may be rather low. This publication describes an Extreme Learning Machine (ELM) technique for minimizing localization error in range-free WSN. In this paper, we propose a Cascade Extreme Learning Machine (Cascade-ELM) to increase localization accuracy in Range-Free WSNs. We tested the proposed approaches in a variety of multi-hop WSN scenarios. Our research focused on an isotropic and irregular environment. The simulation results show that the proposed Cascade-ELM algorithm considerably improves localization accuracy when compared to previous algorithms derived from smart computing approaches. When compared to previous work, isotropic environments show improved localization results.","PeriodicalId":245958,"journal":{"name":"International Journal of Informatics and Communication Technology (IJ-ICT)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Informatics and Communication Technology (IJ-ICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijict.v12i2.pp140-149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Localization is a critical concern in many wireless sensor network (WSN) applications. Furthermore, correct information regarding the geographic placements of nodes (sensors) is critical for making the collected data valuable and relevant. Because of their benefits, such as simplicity and acceptable accuracy, the based connectivity algorithms attempt to localize multi-hop WSN. However, due to environmental factors, the precision of localisation may be rather low. This publication describes an Extreme Learning Machine (ELM) technique for minimizing localization error in range-free WSN. In this paper, we propose a Cascade Extreme Learning Machine (Cascade-ELM) to increase localization accuracy in Range-Free WSNs. We tested the proposed approaches in a variety of multi-hop WSN scenarios. Our research focused on an isotropic and irregular environment. The simulation results show that the proposed Cascade-ELM algorithm considerably improves localization accuracy when compared to previous algorithms derived from smart computing approaches. When compared to previous work, isotropic environments show improved localization results.
基于DV-hop算法的无距离无线传感器网络节点定位机器学习技术
定位是许多无线传感器网络(WSN)应用中的一个关键问题。此外,关于节点(传感器)的地理位置的正确信息对于使收集的数据有价值和相关性至关重要。由于其优点,如简单性和可接受的准确性,基于连接的算法试图本地化多跳WSN。然而,由于环境因素的影响,定位的精度可能会很低。本文描述了一种用于最小化无距离无线传感器网络定位误差的极限学习机(ELM)技术。本文提出了一种级联极限学习机(Cascade- elm)来提高无距离无线传感器网络的定位精度。我们在各种多跳WSN场景中测试了所提出的方法。我们的研究重点是各向同性和不规则的环境。仿真结果表明,与以往基于智能计算方法的定位算法相比,本文提出的级联- elm算法显著提高了定位精度。与以前的工作相比,各向同性环境显示出更好的定位结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信