Backpropagation without human supervision for visual control in Quake II

M. Parker, B. D. Bryant
{"title":"Backpropagation without human supervision for visual control in Quake II","authors":"M. Parker, B. D. Bryant","doi":"10.1109/CIG.2009.5286462","DOIUrl":null,"url":null,"abstract":"Backpropagation and neuroevolution are used in a Lamarckian evolution process to train a neural network visual controller for agents in the Quake II environment. In previous work, we hand-coded a non-visual controller for supervising in backpropagation, but hand-coding can only be done for problems with known solutions. In this research the problem for the agent is to attack a moving enemy in a visually complex room with a large central pillar. Because we did not know a solution to the problem, we could not hand-code a supervising controller; instead, we evolve a non-visual neural network as supervisor to the visual controller. This setup creates controllers that learn much faster and have a greater fitness than those learning by neuroevolution-only on the same problem in the same amount of time.","PeriodicalId":358795,"journal":{"name":"2009 IEEE Symposium on Computational Intelligence and Games","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Symposium on Computational Intelligence and Games","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIG.2009.5286462","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Backpropagation and neuroevolution are used in a Lamarckian evolution process to train a neural network visual controller for agents in the Quake II environment. In previous work, we hand-coded a non-visual controller for supervising in backpropagation, but hand-coding can only be done for problems with known solutions. In this research the problem for the agent is to attack a moving enemy in a visually complex room with a large central pillar. Because we did not know a solution to the problem, we could not hand-code a supervising controller; instead, we evolve a non-visual neural network as supervisor to the visual controller. This setup creates controllers that learn much faster and have a greater fitness than those learning by neuroevolution-only on the same problem in the same amount of time.
在《雷神之锤2》中,没有人类监督的反向传播视觉控制
在拉马克进化过程中使用反向传播和神经进化来训练Quake II环境中代理的神经网络视觉控制器。在以前的工作中,我们手工编码了一个非视觉控制器来监督反向传播,但是手工编码只能用于已知解的问题。在这项研究中,智能体的问题是在一个视觉复杂的房间里攻击一个移动的敌人,房间里有一个大的中心柱子。因为我们不知道问题的解决方案,所以我们无法手工编写监督控制器;相反,我们进化了一个非视觉神经网络作为视觉控制器的监督器。这种设置使控制器比那些通过神经进化学习的控制器学习得更快,具有更强的适应性——只能在相同的时间内解决相同的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信