GEM: An Efficient Entity Matching Framework for Geospatial Data

Setu Shah, Venkata Vamsikrishna Meduri, Mohamed Sarwat
{"title":"GEM: An Efficient Entity Matching Framework for Geospatial Data","authors":"Setu Shah, Venkata Vamsikrishna Meduri, Mohamed Sarwat","doi":"10.1145/3474717.3483973","DOIUrl":null,"url":null,"abstract":"Identifying various mentions of the same real-world locations is known as spatial entity matching. GEM is an end-to-end Geospatial EM framework that matches polygon geometry entities in addition to point geometry type. Blocking, feature vector creation, and classification are the core steps of our system. GEM comprises of an efficient and lightweight blocking technique, GeoPrune, that uses the geohash encoding mechanism. We re-purpose the spatial proximality operators from Apache Sedona to create semantically rich spatial feature vectors. The classification step in GEM is a pluggable component, which consumes a unique feature vector and determines whether the geolocations match or not. We conduct experiments with three classifiers upon multiple large-scale geospatial datasets consisting of both spatial and relational attributes. GEM achieves an F-measure of 1.0 for a point x point dataset with 176k total pairs, which is 42% higher than a state-of-the-art spatial EM baseline. It achieves F-measures of 0.966 and 0.993 for the point x polygon dataset with 302M total pairs, and the polygon x polygon dataset with 16M total pairs respectively.","PeriodicalId":340759,"journal":{"name":"Proceedings of the 29th International Conference on Advances in Geographic Information Systems","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 29th International Conference on Advances in Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3474717.3483973","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Identifying various mentions of the same real-world locations is known as spatial entity matching. GEM is an end-to-end Geospatial EM framework that matches polygon geometry entities in addition to point geometry type. Blocking, feature vector creation, and classification are the core steps of our system. GEM comprises of an efficient and lightweight blocking technique, GeoPrune, that uses the geohash encoding mechanism. We re-purpose the spatial proximality operators from Apache Sedona to create semantically rich spatial feature vectors. The classification step in GEM is a pluggable component, which consumes a unique feature vector and determines whether the geolocations match or not. We conduct experiments with three classifiers upon multiple large-scale geospatial datasets consisting of both spatial and relational attributes. GEM achieves an F-measure of 1.0 for a point x point dataset with 176k total pairs, which is 42% higher than a state-of-the-art spatial EM baseline. It achieves F-measures of 0.966 and 0.993 for the point x polygon dataset with 302M total pairs, and the polygon x polygon dataset with 16M total pairs respectively.
GEM:一种高效的地理空间数据实体匹配框架
识别对现实世界中相同位置的各种提及称为空间实体匹配。GEM是一个端到端的地理空间EM框架,除了点几何类型外,还匹配多边形几何实体。分块、特征向量创建和分类是系统的核心步骤。GEM包含一种高效且轻量级的阻塞技术,即使用geohash编码机制的GeoPrune。我们重新利用Apache Sedona中的空间接近算子来创建语义丰富的空间特征向量。GEM中的分类步骤是一个可插拔组件,它使用一个唯一的特征向量并确定地理位置是否匹配。我们在包含空间属性和关系属性的多个大规模地理空间数据集上进行了三种分类器的实验。GEM实现了一个点x点数据集的f测量值为1.0,总共有176k对,比最先进的空间EM基线高42%。对于总对数为302M的点x多边形数据集和总对数为16M的多边形数据集,f测度分别为0.966和0.993。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信