A Hierarchy of Network Models Giving Bistability Under Triadic Closure

Stefano Di Giovacchino, D. Higham, K. Zygalakis
{"title":"A Hierarchy of Network Models Giving Bistability Under Triadic Closure","authors":"Stefano Di Giovacchino, D. Higham, K. Zygalakis","doi":"10.1137/21m1461290","DOIUrl":null,"url":null,"abstract":"Triadic closure describes the tendency for new friendships to form between individuals who already have friends in common. It has been argued heuristically that the triadic closure effect can lead to bistability in the formation of large-scale social interaction networks. Here, depending on the initial state and the transient dynamics, the system may evolve towards either of two long-time states. In this work, we propose and study a hierarchy of network evolution models that incorporate triadic closure, building on the work of Grindrod, Higham, and Parsons [Internet Mathematics, 8, 2012, 402--423]. We use a chemical kinetics framework, paying careful attention to the reaction rate scaling with respect to the system size. In a macroscale regime, we show rigorously that a bimodal steady-state distribution is admitted. This behavior corresponds to the existence of two distinct stable fixed points in a deterministic mean-field ODE. The macroscale model is also seen to capture an apparent metastability property of the microscale system. Computational simulations are used to support the analysis.","PeriodicalId":313703,"journal":{"name":"Multiscale Model. Simul.","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multiscale Model. Simul.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/21m1461290","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Triadic closure describes the tendency for new friendships to form between individuals who already have friends in common. It has been argued heuristically that the triadic closure effect can lead to bistability in the formation of large-scale social interaction networks. Here, depending on the initial state and the transient dynamics, the system may evolve towards either of two long-time states. In this work, we propose and study a hierarchy of network evolution models that incorporate triadic closure, building on the work of Grindrod, Higham, and Parsons [Internet Mathematics, 8, 2012, 402--423]. We use a chemical kinetics framework, paying careful attention to the reaction rate scaling with respect to the system size. In a macroscale regime, we show rigorously that a bimodal steady-state distribution is admitted. This behavior corresponds to the existence of two distinct stable fixed points in a deterministic mean-field ODE. The macroscale model is also seen to capture an apparent metastability property of the microscale system. Computational simulations are used to support the analysis.
三合一闭包下双稳定性网络模型的一个层次
三合一封闭描述了在已有共同朋友的个体之间形成新友谊的趋势。在大规模社会互动网络的形成过程中,三合一封闭效应可能导致双稳性。在这里,根据初始状态和瞬态动力学,系统可能向两种长期状态中的任何一种演化。在这项工作中,我们在Grindrod, Higham和Parsons的工作基础上提出并研究了包含三元闭包的网络进化模型的层次结构[互联网数学,2012,8,402—423]。我们使用化学动力学框架,仔细注意反应速率与系统大小的关系。在宏观状态下,我们严格地证明了双峰稳态分布的存在。这种行为对应于确定性平均场ODE中存在两个不同的稳定不动点。宏观尺度模型也被视为捕获了微尺度系统的明显亚稳态特性。计算模拟用于支持分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信