Critique of Various Algorithms for Handwritten Digit Recognition Using Azure ML Studio

Goutham Cheedella
{"title":"Critique of Various Algorithms for Handwritten Digit Recognition Using Azure ML Studio","authors":"Goutham Cheedella","doi":"10.34257/gjcstdvol20is1pg1","DOIUrl":null,"url":null,"abstract":"Handwritten Digit Recognition is probably one of the most exciting works in the field of science and technology as it is a hard task for the machines to recognize the digits which are written by different people. The handwritten digits may not be perfect and also consist of different flavors. And there is a necessity for handwritten digit recognition in many real-time purposes. The widely used MNIST dataset consists of almost 60000 handwritten digits. And to classify these kinds of images, many machine learning algorithms are used. This paper presents an in-depth analysis of accuracies and performances of Support Vector Machines (SVM), Neural Networks (NN), Decision Tree (DT) algorithms using Microsoft Azure ML Studio.","PeriodicalId":340110,"journal":{"name":"Global journal of computer science and technology","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global journal of computer science and technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34257/gjcstdvol20is1pg1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Handwritten Digit Recognition is probably one of the most exciting works in the field of science and technology as it is a hard task for the machines to recognize the digits which are written by different people. The handwritten digits may not be perfect and also consist of different flavors. And there is a necessity for handwritten digit recognition in many real-time purposes. The widely used MNIST dataset consists of almost 60000 handwritten digits. And to classify these kinds of images, many machine learning algorithms are used. This paper presents an in-depth analysis of accuracies and performances of Support Vector Machines (SVM), Neural Networks (NN), Decision Tree (DT) algorithms using Microsoft Azure ML Studio.
使用Azure ML Studio的手写数字识别的各种算法的批判
手写数字识别可能是科学技术领域最令人兴奋的工作之一,因为机器识别不同人写的数字是一项艰巨的任务。手写的数字可能不完美,也有不同的味道。在许多实时应用中,手写数字识别是必要的。广泛使用的MNIST数据集包含近60000个手写数字。为了对这类图像进行分类,使用了许多机器学习算法。本文使用Microsoft Azure ML Studio对支持向量机(SVM)、神经网络(NN)、决策树(DT)算法的精度和性能进行了深入分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信