SwitchFlow

Xiaofeng Wu, J. Rao, Wei Chen, Hang Huang, Chris H. Q. Ding, Heng Huang
{"title":"SwitchFlow","authors":"Xiaofeng Wu, J. Rao, Wei Chen, Hang Huang, Chris H. Q. Ding, Heng Huang","doi":"10.1145/3464298.3493391","DOIUrl":null,"url":null,"abstract":"Accelerators, such as GPU, are a scarce resource in deep learning (DL). Effectively and efficiently sharing GPU leads to improved hardware utilization as well as user experiences, who may need to wait for hours to access GPU before a long training job is done. Spatial and temporal multitasking on GPU have been studied in the literature, but popular deep learning frameworks, such as Tensor-Flow and PyTorch, lack the support of GPU sharing among multiple DL models, which are typically represented as computation graphs, heavily optimized by underlying DL libraries, and run on a complex pipeline spanning CPU and GPU. Our study shows that GPU kernels, spawned from computation graphs, can barely execute simultaneously on a single GPU and time slicing may lead to low GPU utilization. This paper presents SwitchFlow, a scheduling framework for DL multitasking. It centers on two designs. First, instead of scheduling a computation graph as a whole, SwitchFlow schedules its subgraphs and prevents subgraphs from different models to run simultaneously on a GPU. This results in less interference and the elimination of out-of-memory errors. Moreover, subgraphs running on different devices can overlap with each other, leading to a more efficient execution pipeline. Second, SwitchFlow maintains multiple versions of each subgraph. This allows subgraphs to be migrated across devices at a low cost, thereby enabling low-latency preemption. Results on representative DL models show that SwitchFlow achieves up to an order of magnitude lower tail latency for inference requests collocated with a training job.","PeriodicalId":154994,"journal":{"name":"Proceedings of the 22nd International Middleware Conference","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 22nd International Middleware Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3464298.3493391","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Accelerators, such as GPU, are a scarce resource in deep learning (DL). Effectively and efficiently sharing GPU leads to improved hardware utilization as well as user experiences, who may need to wait for hours to access GPU before a long training job is done. Spatial and temporal multitasking on GPU have been studied in the literature, but popular deep learning frameworks, such as Tensor-Flow and PyTorch, lack the support of GPU sharing among multiple DL models, which are typically represented as computation graphs, heavily optimized by underlying DL libraries, and run on a complex pipeline spanning CPU and GPU. Our study shows that GPU kernels, spawned from computation graphs, can barely execute simultaneously on a single GPU and time slicing may lead to low GPU utilization. This paper presents SwitchFlow, a scheduling framework for DL multitasking. It centers on two designs. First, instead of scheduling a computation graph as a whole, SwitchFlow schedules its subgraphs and prevents subgraphs from different models to run simultaneously on a GPU. This results in less interference and the elimination of out-of-memory errors. Moreover, subgraphs running on different devices can overlap with each other, leading to a more efficient execution pipeline. Second, SwitchFlow maintains multiple versions of each subgraph. This allows subgraphs to be migrated across devices at a low cost, thereby enabling low-latency preemption. Results on representative DL models show that SwitchFlow achieves up to an order of magnitude lower tail latency for inference requests collocated with a training job.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信