Investigations of the Unsteady Aerodynamic Characteristics for Intakes at Crosswind

Tommaso Piovesan, Zhang Wenqiang, M. Vahdati, P. Zachos
{"title":"Investigations of the Unsteady Aerodynamic Characteristics for Intakes at Crosswind","authors":"Tommaso Piovesan, Zhang Wenqiang, M. Vahdati, P. Zachos","doi":"10.1115/gt2022-82149","DOIUrl":null,"url":null,"abstract":"\n The ground vortex generated in front of an intake operating near the ground and subjected to crosswind is investigated using CFD and compared to the experiments. The flow field of a scale-model intake is numerically simulated with both steady and unsteady approach, with the aim of predicting ground vortex effects and to characterize the vortex unsteady behaviour. The experimental results showed that for an intake near the ground under crosswind the ground vortex that forms under the intake and the in-duct separation, when present, exhibit unsteady behaviour that becomes stronger as the crosswind velocity is increased. The simulations indicate that a steady-state approach only partially reproduces the time-averaged ground vortex characteristics and in-duct distortion losses, while an unsteady approach shows a lower level of unsteadiness compared to the experimental observations. The consequences of the unsteady flow in the intake on the fan aerodynamic and aeroelastic stability are finally discussed to reinforce that these can result in significant non-synchronous vibration (NSV) and loss of stall margin which cannot be adequately assessed if no unsteady component of the inlet distortions is taken into account.","PeriodicalId":191970,"journal":{"name":"Volume 10C: Turbomachinery — Design Methods and CFD Modeling for Turbomachinery; Ducts, Noise, and Component Interactions","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 10C: Turbomachinery — Design Methods and CFD Modeling for Turbomachinery; Ducts, Noise, and Component Interactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/gt2022-82149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The ground vortex generated in front of an intake operating near the ground and subjected to crosswind is investigated using CFD and compared to the experiments. The flow field of a scale-model intake is numerically simulated with both steady and unsteady approach, with the aim of predicting ground vortex effects and to characterize the vortex unsteady behaviour. The experimental results showed that for an intake near the ground under crosswind the ground vortex that forms under the intake and the in-duct separation, when present, exhibit unsteady behaviour that becomes stronger as the crosswind velocity is increased. The simulations indicate that a steady-state approach only partially reproduces the time-averaged ground vortex characteristics and in-duct distortion losses, while an unsteady approach shows a lower level of unsteadiness compared to the experimental observations. The consequences of the unsteady flow in the intake on the fan aerodynamic and aeroelastic stability are finally discussed to reinforce that these can result in significant non-synchronous vibration (NSV) and loss of stall margin which cannot be adequately assessed if no unsteady component of the inlet distortions is taken into account.
侧风进气道非定常气动特性研究
利用CFD研究了近地进气道前在侧风作用下产生的地面涡,并与实验结果进行了比较。采用定常和非定常两种方法对比例模型进气道的流场进行了数值模拟,以预测地面涡效应并表征其非定常特性。实验结果表明,对于侧风作用下靠近地面的进气道,在进气道下方形成的地面涡存在时,其非定常特性随着侧风速度的增大而增强。模拟结果表明,稳态方法只能部分再现时间平均地面涡特性和管道畸变损失,而非定常方法显示出较低的非定常水平。最后讨论了进气道非定常流动对风扇气动和气动弹性稳定性的影响,以强调这些可能导致严重的非同步振动(NSV)和失速裕度损失,如果不考虑进气道畸变的非定常分量,则无法充分评估失速裕度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信