Convolutional Neural Networks for Soft-Matching N-Grams in Ad-hoc Search

Zhuyun Dai, Chenyan Xiong, Jamie Callan, Zhiyuan Liu
{"title":"Convolutional Neural Networks for Soft-Matching N-Grams in Ad-hoc Search","authors":"Zhuyun Dai, Chenyan Xiong, Jamie Callan, Zhiyuan Liu","doi":"10.1145/3159652.3159659","DOIUrl":null,"url":null,"abstract":"This paper presents \\textttConv-KNRM, a Convolutional Kernel-based Neural Ranking Model that models n-gram soft matches for ad-hoc search. Instead of exact matching query and document n-grams, \\textttConv-KNRM uses Convolutional Neural Networks to represent n-grams of various lengths and soft matches them in a unified embedding space. The n-gram soft matches are then utilized by the kernel pooling and learning-to-rank layers to generate the final ranking score. \\textttConv-KNRM can be learned end-to-end and fully optimized from user feedback. The learned model»s generalizability is investigated by testing how well it performs in a related domain with small amounts of training data. Experiments on English search logs, Chinese search logs, and TREC Web track tasks demonstrated consistent advantages of \\textttConv-KNRM over prior neural IR methods and feature-based methods.","PeriodicalId":401247,"journal":{"name":"Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"300","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3159652.3159659","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 300

Abstract

This paper presents \textttConv-KNRM, a Convolutional Kernel-based Neural Ranking Model that models n-gram soft matches for ad-hoc search. Instead of exact matching query and document n-grams, \textttConv-KNRM uses Convolutional Neural Networks to represent n-grams of various lengths and soft matches them in a unified embedding space. The n-gram soft matches are then utilized by the kernel pooling and learning-to-rank layers to generate the final ranking score. \textttConv-KNRM can be learned end-to-end and fully optimized from user feedback. The learned model»s generalizability is investigated by testing how well it performs in a related domain with small amounts of training data. Experiments on English search logs, Chinese search logs, and TREC Web track tasks demonstrated consistent advantages of \textttConv-KNRM over prior neural IR methods and feature-based methods.
卷积神经网络在自组织搜索中的软匹配N-Grams
本文提出了\ texttconvn - knrm,这是一个基于卷积核的神经排序模型,用于模拟n-gram软匹配以进行自组织搜索。\ texttconvn - knrm不是精确匹配查询和文档n-gram,而是使用卷积神经网络来表示不同长度的n-gram,并在统一的嵌入空间中对它们进行软匹配。然后,内核池和学习排序层利用n-gram软匹配来生成最终的排序分数。\ texttconvr - knrm可以端到端学习,并从用户反馈中充分优化。通过使用少量训练数据测试其在相关领域的表现,来研究学习模型的泛化性。在英文搜索日志、中文搜索日志和TREC Web track任务上的实验表明,\ texttconvr - knrm相对于先前的神经IR方法和基于特征的方法具有一致的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信