Identification of nonlinear systems from the knowledge around different operating conditions: A feed-forward multi-layer ANN based approach

Sayan Saha, Saptarshi Das, Anish Acharya, Abhishek Kumar, S. Mukherjee, Indranil Pan, Amitava Gupta
{"title":"Identification of nonlinear systems from the knowledge around different operating conditions: A feed-forward multi-layer ANN based approach","authors":"Sayan Saha, Saptarshi Das, Anish Acharya, Abhishek Kumar, S. Mukherjee, Indranil Pan, Amitava Gupta","doi":"10.1109/PDGC.2012.6449856","DOIUrl":null,"url":null,"abstract":"The paper investigates nonlinear system identification using system output data at various linearized operating points. A feed-forward multi-layer Artificial Neural Network (ANN) based approach is used for this purpose and tested for two target applications i.e. nuclear reactor power level monitoring and an AC servo position control system. Various configurations of ANN using different activation functions, number of hidden layers and neurons in each layer are trained and tested to find out the best configuration. The training is carried out multiple times to check for consistency and the mean and standard deviation of the root mean square errors (RMSE) are reported for each configuration.","PeriodicalId":166718,"journal":{"name":"2012 2nd IEEE International Conference on Parallel, Distributed and Grid Computing","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 2nd IEEE International Conference on Parallel, Distributed and Grid Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PDGC.2012.6449856","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

The paper investigates nonlinear system identification using system output data at various linearized operating points. A feed-forward multi-layer Artificial Neural Network (ANN) based approach is used for this purpose and tested for two target applications i.e. nuclear reactor power level monitoring and an AC servo position control system. Various configurations of ANN using different activation functions, number of hidden layers and neurons in each layer are trained and tested to find out the best configuration. The training is carried out multiple times to check for consistency and the mean and standard deviation of the root mean square errors (RMSE) are reported for each configuration.
基于不同运行条件的非线性系统识别:一种基于前馈多层神经网络的方法
本文研究了利用系统输出数据在各线性化工作点上的非线性系统辨识。为此,采用了一种基于前馈多层人工神经网络(ANN)的方法,并在核反应堆功率电平监测和交流伺服位置控制系统两个目标应用中进行了测试。使用不同激活函数、隐藏层数和每层神经元的各种配置的人工神经网络进行训练和测试,以找出最佳配置。进行多次训练以检查一致性,并报告每种配置的均方根误差(RMSE)的平均值和标准偏差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信